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 a b s t r a c t

Audio-visual generalized zero-shot learning is aimed at learning good representations from audio-visual data, 
enabling the recognition of unseen classes during testing. The existing embedding and generation methods have 
made significant progress. However, these methods do not fully extract the internal features of each modality. 
Moreover, there is insufficient information interaction between different modalities. To address these issues, we 
propose an audiovisual zero-shot learning method based on self-attention and cross-modal attention (SACMA). 
Specifically, we use a self-attention mechanism to obtain information within a single modality and a cross-
modal cross-attention mechanism to capture the relationships between different modalities. To establish the 
connections between different modalities and minimize the gap between their features, we introduce a combined 
contrastive loss function and a cosine similarity loss function. We evaluated the proposed method on three 
benchmark datasets, VGGSound-GZSL, UCF-GZSL, and ActivityNet-GZSL, and compared it with eleven state-of-
the-art methods. Code and data available at https://github.com/ybyangjing/SACMA.

1.  Introduction

Generalized zero-shot learning (GZSL) has become a hot research 
area in computer vision because it can generalize knowledge from 
known classes to unknown classes while retaining known class knowl-
edge. In the early zero-shot learning approaches, single-modal data, such 
as images [1–7] and text [8], were typically utilized. However, relying 
solely on data derived from a single modality is not sufficient. For exam-
ple, using both auditory and visual senses when one is watching a movie 
can enhance one’s overall viewing experience. Moreover, audio-visual 
generalized zero-shot learning can alleviate the limitations of single-
modal data and fuse auditory and visual data to obtain powerful repre-
sentations.

Owing to the semantic differences between audio and visual infor-
mation, samples belonging to the same category are represented differ-
ently by different modalities. Therefore, ensuring semantic consistency 
between auditory and visual information is a key issue to be solved in 
audio-visual zero-shot learning tasks. Currently, two types of commonly 
used solutions are available: embedding-based methods and generation-
based methods. Embedding-based methods embed audio and visual in-
formation in a shared space and use loss functions to align the features 
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of different modalities. Generative-based methods simulate the features 
of unknown classes and learn the feature differences between the known 
and unknown classes. However, these approaches ignore the importance 
of single-modal information, and different modalities exhibit insufficient 
information interaction. We found that video data are affected by envi-
ronmental noise and various changes, such as background noise, illumi-
nation changes, and occlusion, which is important for understanding the 
semantic consistency between the auditory and visual modalities. There-
fore, we believe that separately learning the key features contained in 
audio and video information is beneficial for the subsequent understand-
ing of the semantic associations between auditory information and vi-
sual information.

To overcome the limitations of the above approaches, we propose 
a novel framework termed self-attention and cross-modal attention for 
audio-visual zero-shot learning. Our audio-visual generalized zero-shot 
learning method, which focuses on the connections between various 
modalities, is shown in Fig. 1. Compared with the previously developed 
methods, the audio-visual generalized zero-order learning method pro-
posed in this study, which fuses intramodal information and intermodal 
correlations, can simultaneously focus on the information contained 
within a single modality and the relationships between modalities. Our 
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Fig. 1. Illustration of the proposed SACMA framework for audio-visual zero-shot learning. SACMA employs self-attention (SA) to capture intramodal audio and 
video information and cross-attention (CA) to model the semantic associations between modalities, aligning audio-visual and text embeddings. Knowledge transfer 
to unseen classes is achieved by predicting the text label embedding that is closest to the given audio-visual embedding.

method uses an attention mechanism to learn the respective internal 
features of audio and video data and a cross-modal cross-attention mech-
anism to learn the relationships between the audio and video modalities, 
allowing the model to more comprehensively utilize the information ac-
quired from different modalities. Thus, the model can learn more gen-
eral features from audio-visual data and improve its generalizability to 
unseen classes.

To better train our model, we construct a combined contrastive loss 
function and a cosine similarity loss. The combined contrastive loss is 
used to learn the relationships among the audio, video, and text modal-
ities. Thus, the combination of different input modes is fully consid-
ered during the modeling process. By considering multimodal combi-
nations, our method not only captures the information between each 
pair of modalities in a more comprehensive manner but also helps im-
prove the adaptability of the model to complex correlation structures. 
This function not only enables the model to better learn and utilize the 
rich information contained in multimodal data but also significantly im-
proves its ability to model the correlations of multimodal data in actual 
complex scenarios. The cosine similarity loss is used to measure the sim-
ilarity between the representations learned by the model from samples 
belonging to the same category. Through this loss function, the model 
is encouraged to more effectively distinguish between similar samples 
during the learning process, thereby more accurately capturing the in-
herent similarities between samples. This function helps to better reflect 
the categorical associations between samples, providing stronger sup-
port enhancing for the generalizability and accuracy of the model. The 
main contributions of this article are as follows:

• We introduce a dual-input audiovisual GZSL framework, namely, 
SACMA, which includes both unimodal and multimodal inputs to 
ensure semantic consistency between data derived from different 
modalities.

• To extract features from a single modality and the interactions be-
tween different modalities, we use a self-attention (SA) mechanism 
and a cross-modal attention (CA), respectively.

• We construct a combined contrastive loss function and a cosine sim-
ilarity loss to reduce the distances between different modalities and 
help the model align the representations of differ-ent modalities in a 
common multimodal space.

• A comprehensive experimental evaluation of our met-hod is 
conducted on three datasets: UCF-GZSL, VGGSound-GZSL, 
and ActivityNet-GZSL. The proposed method achieves a 7.8%
improvement in GZSL performance and a 0.88% improvement in 
zero-shot learning (ZSL) performance on the UCF-GZSL data-set.

2.  Related work

2.1.  Single-modal learning

Single-modal learning is an important research direction computer 
vision, focusing on processing and analyzing information from single-
modal data (such as images and text). How to obtain powerful feature 
representations from single-modal data is a crucial challenge. The con-
volutional neural network (CNN) [9,10] utilizes local context informa-
tion and translation invariance properties and is widely used in single-
modal learning. The attention mechanism is a process of adaptive selec-
tion based on input features [11], which helps the model obtain pow-
erful feature representations. In this section, we introduce the research 
progress on methods for mining intramodal information in single-modal 
learning.

CNN-based methods: An understanding of biological visual systems 
serves as the inspiration for the CNN design. The main purpose is to 
effectively capture local features through convolution operations and 
to achieve downsampling and position invariance of features through 
pooling operations. Since Krizhevsky et al. [12] proposed the AlexNet 
network, CNNs have rapidly emerged as a mainstream framework in 
computer vision for learning features within single-modal data. As the 
number of network layers has increased, VGGNet [13] and MSRNet [14] 
have also emerged. However, the continuous increase in the number 
of network layers is detrimental to practical applications. As a result, 
CNN lightweight frameworks such as MobileNet [15] and ShuffleNet 
[16] have emerged. By strengthening the performance of the convolu-
tion module, a series of new architectures have emerged, including the 
network in network (NiN) [17] and GoogLeNet [18] architectures. In 
addition, derivative models such as ResNet [19] and Inception ResNet 
[20] have also been introduced. Since data such as images lack tem-
poral information compared to video data, Tran et al. [21] proposed 
a deep three-dimensional convolutional network trained on large-scale 
supervised video datasets to learn spatiotemporal features, helping the 
model better extract important features within single-modal data. Gao 
et al. [22] suggested TS-GCN, a dual-stream graph convolutional net-
work framework designed to model relationships between actions and 
attributes, between actions, and between attributes and actions. TS-GCN 
can learn from single modalities and obtain more information from data.

Attention mechanism-based methods: Attention mechanisms sim-
ulate human perception, enable the model to focus on the salient parts of 
specific features, and are widely used in various single-modal learning 
tasks [23,24]. By introducing an attention mechanism, the network can 
learn autonomously and selectively by focusing on key information in a 
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single modality, thereby improving the model performance and gener-
alizability. The soft attention mechanism developed by Chen et al. [25] 
and Max et al. [26] can be trained in an end-to-end manner for con-
volutional networks. By inputting the features extracted by convolution 
into the attention block, the model can focus on the internal features of 
the modality. Wang et al. [27] proposed a residual attention network to 
integrate soft attention into a rapidly developing feedforward network 
structure using an encoder-decoder attention module. Different atten-
tion modules capture different types of attention to guide the model 
to learn features in single-modal data. The self-attention mechanism 
is an attention mechanism originating from natural language process-
ing (NLP) [28,29]. Because of its excellent performance in effectively 
capturing long-range dependencies and adaptability, the self-attention 
mechanism plays an important role in single-modal learning.

CNNs automatically learn hierarchical feature representations of 
single-modal data through structures such as convolutional layers and 
pooling layers and have achieved great success in single-modal tasks 
such as image classification [30–33] and object detection [34]. The self-
attention mechanism establishes relationships between different posi-
tions within a single sequence, focuses on long-distance dependencies 
within the sequence, and attains good performance with respect to the 
long-distance dependencies contained in video data. Therefore, in this 
study, our method uses a self-attention mechanism to learn important 
audio and visual information from videos.
2.2.  Audio-visual multimodal learning

In recent years, audio-visual multimodal learning has received in-
creasing attention because it can simulate human cognitive methods 
of integrating multisensory input and provide richer and more com-
prehensive information. In audio-visual multimodal learning, captur-
ing the connection between audio and video using the natural align-
ment between them is a challenging task. In this section, we introduce 
research progress on methods for capturing intermodal correlations in 
audio-visual multimodal learning.

Transformer-based audio-visual learning: The transformer model 
was initially successful in NLP and was later applied to computer vision. 
In audio-visual multimodal learning, transformers have been widely 
used in tasks such as video retrieval [35], audio-visual localization [36], 
and audio-visual source separation [37]. Cheng et al. [38] proposed a 
novel self-supervised framework for learning universal cross-modal rep-
resentations from unlabeled videos and explored three different collabo-
rative attention modules to focus on sound-related discriminative visual 
areas and to introduce interactions between them. Nagrani et al. [39] 
studied a variety of audio-visual fusion strategies for the multimodal 
bottleneck transformer (MBT), aiming to improve the traditional trans-
former architecture, such as early fusion and midstage fusion. Specifi-
cally, the MBT was proposed to limit the cross-modal flow to the later 
layer of the network. The layers adopt single-modal learning and fo-
cus on single-modal features through midterm fusion. In addition, the 
MBT limits cross-modal attention between tokens within the layer by 
introducing an attention bottleneck layer to capture more cross-modal 
features. Mercea et al. [40] proposed a temporal cross-attention frame-
work for the audio-visual generalized zero-shot learning task that learns 
the relationship between different modalities through a cross-modal at-
tention mechanism.

Non-transformer audio-visual learning: Owens et al. [41] used 
convolutional neural networks to predict whether a given pair of au-
dio and video clips was temporally aligned in a self-supervised manner. 
The learned representations were then used to perform sound source lo-
calization and audio-visual action recognition. Arandjelovic et al. [42] 
introduced the audio-visual correspondence learning task. Here, train-
ing includes using visual and audio subnetworks to learn semantic the 
correspondence between audio and visual data. Gao et al. [43] proposed 
a multi-instance multilabel learning framework to solve the audio-visual 
source separation problem; in this framework, different audio compo-
nents are extracted and associated with visual objects in videos.

Our method benefits from a transformer and adopts its cross-
modal cross-attention mechanism to learn the correlation between audio 
and video. Compared with nontransformer-based methods, the use of 
transformer-based cross-attention mechanisms can enable one sequence 
to pay attention to another sequence, thereby achieving cross-modal as-
sociations between different sequences.

3.  Methods
3.1.  Problem definition

In the audio-visual ZSL task, the aim is to learn to recognize previ-
ously unseen (U) classes, i.e., classes that the model is not exposed to 
during training, from video data. In a more challenging GZSL scenario, 
the test set contains not only samples from unseen classes but also sam-
ples from seen (S) classes. Therefore, the model needs to have the abil-
ity to generalize knowledge from seen to unseen classes during testing 
while retaining knowledge about visible training classes. The model will 
be able to better simulate learning tasks in the real world. However, it 
is challenging for the model to cope with complex scenarios and gen-
eralizations. We divide the audio-visual dataset classes into seen and 
unseen classes, and the corresponding labels are denoted 𝑌𝑆 and 𝑌𝑈 , re-
spectively. 𝑌𝑆 ∩ 𝑌𝑈 = ∅. The dataset consists of audio features 𝑎𝑖,video 
features 𝑣𝑖 and real labels 𝑦𝑖. 

3.2.  Overall framework
Self-attention mechanisms focus on information within modalities, 

while cross-attention mechanisms enable interactions between different 
modalities. To simultaneously focus on the information within audio 
and visual modalities and inter-modal relationships, we propose a novel 
framework based on self-attention and cross-modal attention. As shown 
in Fig. 2. The input data modalities of the SACMA framework are audio, 
visual, and textual features, i.e., 𝑎, 𝑣, and 𝑡, respectively. Notably, 𝐼𝑎 and 
𝐼𝑣 are passed through the audio encoder 𝐴𝑒𝑛𝑐 and the video encoder 𝑉𝑒𝑛𝑐 , 
respectively, and a new input 𝐼𝑚 is obtained by splicing 𝐼𝑎 and 𝐼𝑣. 𝐼𝑎, 
𝐼𝑣, and 𝐼𝑚 are input into a transformer. Each transformer layer consists 
of a multi-head self-attention layer, two normalization layers, a fully 
connected feedforward layer, and residual connections. Self-attention is 
used to learn the internal features of the modality for 𝐼𝑎 and 𝐼𝑣, and 
cross-modal attention is used to interact with the information seen in 
different modalities for 𝐼𝑚. The outputs of the model are projected to the 
multimodal common space through the projection modules 𝐴𝑝𝑟𝑜, 𝑉𝑝𝑟𝑜, 
and 𝑀𝑝𝑟𝑜. 𝑡 does not need to be input to the transformer, but it needs to 
be projected to the multimodal common space through 𝑇𝑝𝑟𝑜.

3.3.  Joint embedding
The input data of our multimodal transformer framework consist of 

three modal datasets: audio, video, and text. These features are extracted 
from the original data through pretraining. Two encoders, an audio en-
coder and a video encoder, denoted 𝐴𝑒𝑛𝑐 and 𝑉𝑒𝑛𝑐 , respectively, are set 
up by using 𝐴𝑒𝑛𝑐 and 𝑉𝑒𝑛𝑐 to project the audio and video features into the 
same feature dimension. These features preserve semantic information 
in the same dimensions as text features 𝑡. 
𝐼𝑎 = 𝐴𝑒𝑛𝑐 (𝑎), 𝐼𝑣 = 𝑉𝑒𝑛𝑐 (𝑣) (1)

To allow the model to better learn and understand the information 
within a given modality and the correlations between data belonging to 
different modalities, we propose a dual-input method that uses single-
modal and multimodal inputs. With single-modal inputs, the model is 
able to independently learn and understand the characteristics of differ-
ent data modalities, gaining insights into the unique properties of each 
modality, such as the sound characteristics of audio and the visual con-
tent of video. This independent learning scheme helps the model more 
accurately capture the information of each modality, allowing it to bet-
ter understand audio and video information in multimodal tasks and 
achieve a more comprehensive multimodal understanding.
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Fig. 2. SACMA takes audio and visual features extracted from video data as input. After concatenation, the fused features are passed to transformer layers, where 
self-attention captures intra-modal information and cross-attention models inter-modal interactions. The resulting classification outputs (𝑝𝑎, 𝑝𝑣, 𝑝𝑚) are projected into 
a multimodal common space shared with text embeddings, where the loss function is applied. Projection modules (𝐴𝑝𝑟𝑜, 𝑉𝑝𝑟𝑜, 𝑀𝑝𝑟𝑜, 𝑇𝑝𝑟𝑜) and reconstruction modules 
(𝐷(𝑎), 𝐷(𝑣), 𝐷(𝑚), 𝐷(𝑡)) correspond to different modalities.

In multimodal tasks, the model needs to learn the characteristics of 
each modality independently, and it also needs to understand and pay 
attention to the relationships between different modalities. For example, 
in audio and video sentiment analysis tasks, the model needs to under-
stand not only the sound characteristics contained in the input audio 
and the facial expression characteristics of the input video but also the 
relationship between these two types of characteristics because sounds 
and expressions are often related to each other when emotions are ex-
pressed. To encourage the model to pay attention to the relationships 
between modalities, we use early fusion to integrate the information 
derived from different modalities. Early fusion can fuse the information 
acquired from different modalities into a common representation early 
in the data processing pipeline, allowing the data elements of different 
modalities to interact at the input level; this helps the model to more 
comprehensively understand multimodal inputs and jointly participate 
in feature learning.
𝐼𝑚 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝐼𝑎, 𝐼𝑣) (2)

where concat represents a splicing operation and a and v represent the 
embedding of audio and visual features, respectively. 

3.4.  Multimodal fusion transformer
The proposed method contains 𝐿-stacked transformer layers; each 

transformer layer consists of a multihead attention (MHA) layer and a 
feedforward neural network (FFN) layer, and layer normalization (LN) 
is applied before each layer. After layer normalization is applied, the 
input features are first sent to the multihead attention layer. After resid-
ual connection and layer normalization are applied, the signals are sent 
to the feedforward neural network layer. The output of the 𝑙-th feed-
forward neural network is used as the input of the 𝑙 + 1-th multihead 
attention layer. The FFN contains two linear layers, a gaussian error lin-
ear unit (GELU), which serves as the nonlinear activation function, and 
two random deactivation functions. Specifically, a self-attention mecha-
nism is applied to single-modal inputs 𝐼𝑎 and 𝐼𝑣, whereas a cross-modal 
attention mechanism is employed for multimodal input 𝐼𝑚. The self-
attention mechanism enables the model to focus on the information con-
tained within the input sequence, which helps the model more compre-
hensively understand the intrinsic structure of single-modal data. The 
cross-modal cross-attention mechanism can establish dependencies be-
tween different data modalities, thereby effectively merging multimodal 
information and integrating the important features of multimodal data. 
Combining the two mechanisms can help the model learn more pow-
erful audio-visual representations. We transform the input embedding 
x into query (Q), key (K), and value (V) vectors by means of three lin-
ear transformations: 𝑄 = 𝑋𝑊𝑄, 𝑄 = 𝑋𝑊𝐾 , and 𝑄 = 𝑋𝑊𝑉 . 𝑊𝑄, 𝑊𝐾 , and 

𝑊𝑉  are the weight matrices. The attention score can be obtained through 
Eq. (3). Since multimodal inputs concatenate audiovisual features, the 
cross-attention mechanism pays more attention to the information in-
teraction between different modalities, and the attention scores of the 
same modality are masked by the mask matrix.

𝑆𝑐𝑜𝑟𝑒(𝑄,𝐾) = 𝑄𝐾𝑇
√

𝑑𝑘
𝑚𝑎𝑠𝑘(𝑜𝑝𝑡.) (3)

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉 ) = 𝑠𝑜𝑓𝑡max [(𝑆𝑐𝑜𝑟𝑒(𝑄,𝐾)]𝑉 (4)

where Attention(.) denotes the attention output and mask (opt.) denotes 
that the mask is optional. The formula for the 𝑙-th transformer layer is 
as follows:
𝑍

′

𝑙 = 𝑀𝐻𝐴
(

𝐿𝑁
(

𝑍𝑙−1
))

+𝑍𝑙−1 (5)

𝑍𝑙 = 𝐹𝐹𝑁
(

𝐿𝑁
(

𝑍
′

𝑙

))

+𝑍
′

𝑙 (6)

where 𝑙 represents the number of layers, the value range is {1… 𝐿} , 
and 𝑍𝑙−1 represents the output of the 𝑙 − 1 layer.

3.5.  Projection to the multimodal common space
In multimodal data, information from different modalities has dif-

ferent semantic granularities. In each training iteration, for each input 
of 𝐼𝑎, 𝐼𝑣, and 𝐼𝑚, the SACMA model is called once to obtain the corre-
sponding output classification token. So there are three outputs 𝑝𝑎, 𝑝𝑣, 
and 𝑝𝑚. To obtain the final embedding for each modality, we map the 
output and text label embeddings of the model together into a multi-
modal common space. In the prediction phase, we obtain class predic-
tions by determining the projected word2vec embedding that is closest 
to the output embedding.
𝑝 = argmin

𝑐

(

‖

‖

𝜑𝑐
𝑡− 𝜑𝑚

‖

‖2
)

(7)

where 𝜑𝑐
𝑡  represents the representation of the word2vec embedded class 

label of class 𝑐 after performing embedding and mapping, and 𝜑𝑚 rep-
resents the representation of the audio-visual output after the mapping 
process.

3.6.  Loss function

We train our model using a loss function 𝑙 consisting of a combined 
contrastive loss [44] 𝑙𝑐𝑐𝑙, a cosine similarity loss 𝑙cos, a regression loss 
𝑙𝑟𝑒𝑔 , and a reconstruction loss 𝑙𝑟𝑒𝑐 .
𝑙 = 𝑙𝑐𝑐𝑙 + 𝜆_ cos𝑙cos + 𝑙𝑟𝑒𝑔 + 𝑙𝑟𝑒𝑐 (8)

where 𝜆_ cos represents the weight of the cosine similarity loss 𝑙cos.
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3.6.1.  Combinatorial contrastive loss
Our combined contrastive loss consists of a single-modal contrastive 

loss 𝑙𝑠 and a multimodal contrastive loss 𝑙𝑚.
𝑙𝑐𝑐𝑙 = 𝑙s + 𝑙𝑚 (9)

Unlike traditional contrastive learning methods that rely on explicit neg-
ative sampling, our approach implicitly leverages intra-batch negatives: 
within each mini-batch, non-matching sample pairs are naturally treated 
as negative examples. This design encourages the model to draw se-
mantically aligned cross-modal samples closer in the shared embedding 
space while simultaneously pushing apart dissimilar pairs. To this end, 
we train three pairwise contrastive losses, namely the contrastive loss 
𝑙𝑎_𝑣 between audio and video, the contrastive loss between text and au-
dio 𝑙𝑡_𝑎, and the contrastive loss between text and video 𝑙𝑎_𝑣.
𝑙𝑠 = 𝜆𝑡_𝑎𝑙𝑡_𝑎 + 𝜆𝑡_𝑣𝑙𝑡_𝑣 + 𝜆𝑎_𝑣𝑙𝑎_𝑣 (10)

where 𝜆𝛼_𝛽 represents the weighting coefficient of (𝛼, 𝛽). Our single-
modal combination loss considers all possible and available modal 
combinations and can be generalized to any set of modalities M = 
{

𝑚1, 𝑚2, 𝑚3,… , 𝑚𝑛
}

.

𝑙𝑠 =
∑

𝑢,𝑣⊂𝑀,𝑢∩𝑣=∅
𝜆𝑢𝑣𝑙𝑢𝑣 (11)

where 𝑙𝑢𝑣 is the contrastive loss between modality 𝑢 and modality 𝑣, 
and 𝜆𝑢𝑣 is the weighting coefficient. Moreover, we encourage class 
tokens to exchange information between a single modality and multiple 
modalities, that is, the contrastive loss 𝑙𝑎_𝑎𝑣 is between 𝑎 and 𝑎𝑣, the 
contrastive loss 𝑙𝑣_𝑎𝑣 is between 𝑣 and 𝑎𝑣, and the contrastive loss 𝑙𝑡_𝑎𝑣 is 
between 𝑡 and 𝑎𝑣. The multimodal contrastive loss 𝑙𝑚 is a combination 
of the above losses.
𝑙𝑚 = 𝜆𝑡_𝑎𝑣𝑙𝑡_𝑎𝑣 + 𝜆𝑎_𝑎𝑣𝑙𝑎_𝑎𝑣 + 𝜆𝑣_𝑎𝑣𝑙𝑣_𝑎𝑣 (12)

The complete representation of our combined comparison loss 𝑙𝑐𝑐𝑙 is as 
follows:

𝑙𝑐𝑐𝑙 =𝜆𝑡_𝑣𝑙𝑡_𝑣 + 𝜆𝑡_𝑣𝑙𝑡_𝑣 + 𝜆𝑎_𝑣𝑙𝑎_𝑣
+ 𝜆𝑡_𝑎𝑣𝑙𝑡_𝑎𝑣 + 𝜆𝑎_𝑎𝑣𝑙𝑎_𝑎𝑣 + 𝜆𝑣_𝑎𝑣𝑙𝑣_𝑎𝑣

(13)

We use noise contrastive estimation [45] to calculate the combined 
contrastive loss:

𝑙𝑢_𝑣 = − 1
𝐵

𝐵
∑

𝑖=1
log

(

exp
(

𝑢T𝑖 𝑣𝑖∕𝜏
)

∑𝐵
𝑗=1 exp

(

𝑢T𝑖 𝑣𝑗∕𝜏
)

)

−

− 1
𝐵

𝐵
∑

𝑖=1
log

⎛

⎜

⎜

⎜

⎝

exp
(

𝑢T𝑖 𝑣𝑖∕𝜏
)

∑𝐵
𝑗=1 exp

(

𝑢T𝑗 𝑣𝑖∕𝜏
)

⎞

⎟

⎟

⎟

⎠

(14)

where 𝜏 represents the temperature parameter and 𝐵 is the batch size.

3.6.2.  Cosine similarity loss
Our cosine similarity loss computes the similarity between the three 

outputs 𝜑𝑎, 𝜑𝑚, and 𝜑𝑣  of the model and the text label 𝜑𝑡, for which 
we train three pairwise similarity losses 𝑙𝑎_𝑡, 𝑙𝑣_𝑡, and 𝑙𝑚_𝑡. Moreover, we 
implement an additional cosine similarity loss 𝑙𝑎_𝑣 to calculate the sim-
ilarity between 𝜑𝑎 and 𝜑𝑣 .

𝑙cos = 𝑙𝑎_𝑡 + 𝑙𝑣_𝑡 + 𝑙𝑚_𝑡 + 𝑙𝑣_𝑎 (15)

where 𝑙𝑥_𝑦 represents the cosine similarity loss between 𝜑𝑥 and 𝜑𝑦. In 
deep learning, the cosine similarity loss 𝑙𝑥_𝑦 between 𝑥 and 𝑦 is calculated 
as follows:
𝑙𝑥_𝑦 = 1 − cos (𝑥, 𝑦) (16)

where 𝑥, 𝑦 ⊂
{

𝜑𝑎, 𝜑𝑣, 𝜑𝑚, 𝜑𝑡
}

, and cos (𝑥, 𝑦) represent the cosine similar-
ity between 𝑥 and 𝑦. When the cosine similarity is close to 1, the loss 
value is close to 0, indicating that the similarity between the model pre-
diction and the target is high; however, when the cosine similarity is far 
from 1, the loss value increases, indicating that the similarity is low. The 
value range of cosine similarity is [-1, 1], where 1 indicates complete 

similarity, -1 indicates complete dissimilarity, and 0 indicates orthogo-
nality, i.e., no similarity or independence. The values in between rep-
resent intermediate similarities or dissimilarities. The cosine similarity 
between 𝑥 and 𝑦 is calculated as follows:

cos (𝑥, 𝑦) =
𝑥 ⋅ 𝑦

‖𝑥‖‖𝑦‖
=

∑𝑛
𝑖=1 𝑥𝑖 ⋅ 𝑦𝑖

√

∑𝑛
𝑖=1

(

𝑥𝑖
)2 ×

√

∑𝑛
𝑖=1

(

𝑦𝑖
)2

(17)

3.6.3.  Regression loss
The goal of the regression loss is to reduce the distance between the 

single-modal output embedding of a sample, the multimodal output em-
bedding, and the corresponding word2vec embedding. As in [40], our 
regression loss is also based on the mean square error metric. However, 
we supplement this approach and focus not only on the distance be-
tween the multimodal output embedding and the text label embedding 
but also on the single-modal distance between the static input and the 
text label embedding. The regression loss is expressed as follows:

𝑙𝑟𝑒𝑔 =1
𝑛

𝑛
∑

𝑖=1

(

𝜑𝑚𝑖
− 𝜑𝑡𝑖

)2
+ 1

𝑛

𝑛
∑

𝑖=1

(

𝜑𝑎𝑖 − 𝜑𝑡𝑖

)2

+ 1
𝑛

𝑛
∑

𝑖=1

(

𝜑𝑣𝑖 − 𝜑𝑡𝑖

)2
(18)

where 𝜑𝑚𝑖
, 𝜑𝑎𝑖 , and 𝜑𝑣𝑖  are the audio-visual embedding, audio embed-

ding, and visual embedding, respectively.

3.6.4.  Reconstruction loss
The reconstruction loss of the SACMA method is also based on the 

mean squared error metric and complements the process of reconstruct-
ing single-modal output embeddings. The goal of the reconstruction loss 
is to ensure that our model is able to decode the semantic information 
contained in the pre-extracted text label embeddings from embeddings 
𝜑𝑎, 𝜑𝑚, 𝜑𝑣, and 𝜑𝑣𝑖 . The reconstruction loss is expressed as follows:

𝑙𝑟𝑒𝑐 =
1
𝑛

𝑛
∑

𝑖=1

(

𝛾𝑚𝑖
− 𝑡𝑖

)2
+ 1

𝑛

𝑛
∑

𝑖=1

(

𝛾𝑎𝑖 − 𝑡𝑖
)2

+ 1
𝑛

𝑛
∑

𝑖=1

(

𝛾𝑣𝑖 − 𝑡𝑖
)2

+ 1
𝑛

𝑛
∑

𝑖=1

(

𝛾𝑡𝑖 − 𝑡𝑖
)2

(19)

where 𝛾𝑚𝑖
, 𝛾𝑎𝑖 , 𝛾𝑣𝑖 , and 𝛾𝑡𝑖  represent the reconstructed audio-visual fea-

tures, audio features, visual features, and text features, respectively.

4.  Experimental setup
4.1.  Dataset

We evaluate our method on the three benchmark datasets (UCF-
GZSL, VGGSound-GZSL, and ActivityNet-GZSL) that were introduced 
previously [46]. Each dataset is divided according to the total number 
of classes in the dataset, the total number of seen classes, the total num-
ber of unseen classes, and the detailed division of the numbers of seen 
and unseen classes during training, validation, and testing (as shown in 
Table 1).

VGGSound-GZSL is a modified version of the large audio-visual 
dataset VGGSound [47]. This dataset contains a total of 276 classes, 
including 138 seen classes and 138 unseen classes.

UCF-GZSL is an action recognition dataset for real-life action videos. 
This dataset is a subset of UCF101 [48] and contains a total of 51 classes 
of data sources, including 30 seen classes and 21 unseen classes.

ActivityNet-GZSL is an action recognition dataset based on Activi-
tyNet [49]. This dataset contains a total of 200 classes of data, including 
99 visible classes and 101 unseen classes.

4.2.  Implementation details

The Adam optimizer is used to train our model with a weight decay 
of 1𝑒−5. The initial learning rates for VGGSound-GZSL, UCF-GZSL, and 
ActivityNet-GZSL are set to 6𝑒−5, 7𝑒−5, and 7𝑒−5, respectively. When we 
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Table 1 
Statistics of the three benchmark datasets, including their total numbers of classes (C), seen 
classes (S), and unseen classes (U), as well as the division of seen and unseen classes across 
training (𝑡𝑟𝑠), validation (𝑣𝑎𝑙𝑠, 𝑣𝑎𝑙𝑢), and test (𝑡𝑒𝑠, 𝑡𝑒𝑢) sets.
 STAGE  First stage  Second stage

 Training  Validation  Training  Test
 DATASET  C  S  U 𝑡𝑟𝑠 𝑣𝑎𝑙𝑠 𝑣𝑎𝑙𝑢 𝑡𝑟𝑠 𝑡𝑒𝑠 𝑡𝑒𝑢

 UCF-GZSL  51  30  21  30  30  12  42  42  9
 VGGSound-GZSL  276  138  138  138  138  138  207  207  69
 ActivityNet-GZSL  200  99  101  99  99  51  150  150  50

calculate the loss function 𝑙, we set the weight 𝜆_ cos of the loss 𝑙_ cos
in Eq. (8) to 0.2. We also calculate the temperature parameter when 
calculating the contrast loss and normalize the vector before calculating 
the dot product. Larger weights are set for the loss functions 𝑙𝑡_𝑎, 𝑙𝑡_𝑣, 
and 𝑙𝑡_𝑎𝑣 in Eq. (13) because this is beneficial for training the model: 
𝜆𝑡_𝑎𝑣 = 1, 𝜆𝑡_𝑎 = 𝜆𝑡_𝑣 = 0.8, and 𝜆𝑎_𝑣 = 𝜆𝑎_𝑎𝑣 = 𝜆𝑣_𝑎𝑣 = 0.1. Furthermore, for 
the VGGSound-GZSL dataset, the learning rate attenuator is set to true, 
and the other settings follow those employed in [34]; all the models are 
trained on a single NVIDIA GeForce GTX 3090Ti GPU.

4.3.  Evaluation metrics

GZSL suffers from a common problem in that the model has an inher-
ent bias towards unseen classes, resulting in a generally higher accuracy 
for seen classes. To overcome this bias and improve the accuracies on 
both seen and unseen classes simultaneously, we follow [58] and use 
average class accuracy to evaluate the model, calculate the average ac-
curacies on seen (S) and unseen (U) classes, and use their harmonic 
mean (HM) as the evaluation metric for our GZSL task. The ZSL perfor-
mance is obtained by considering only the subset of test samples from 
the unseen test classes.

4.4.  Comparsion methods

We compare the proposed SACMA method with five ZSL approaches 
and six GZSL approaches. For ZSL methods, we use concatenated image 
and audio features as input instead of image features alone. The core 
ideas of the compared methods are as follows:

DEVISE [52] introduces a deep embedding model that leverages tex-
tual data to learn semantic relations between labels and explicitly maps 
images into a rich semantic embedding space, where similarity match-
ing is used for label prediction.

ALE [1] is a label-embedding-based ZSL framework that maps classes 
into an attribute vector space and performs classification by learning a 
compatibility function between images and label embeddings.

SJE [53] learns a compatibility function between image and class 
embeddings, ensuring that matched embeddings receive higher scores 
than mismatched ones.

APN [6] jointly learns global features and local features through an 
attribute prototype network, enhancing the localization and disentan-
glement of attributes for more effective knowledge transfer from seen 
to unseen classes.

f-VAEGAN-D2 [54] is a unified conditional generative framework 
that combines VAE and GAN, leveraging unlabeled data to model 
marginal feature distributions and generate interpretable visual 
features.

CJME [55] embeds video, audio, and text labels into a shared em-
bedding space, ensuring that embeddings of the same class are closer 
than those of different classes. It further introduces a modality-attention 
mechanism to identify the dominant modality.

AVZSLNet [56] extends CJME by employing a cross-modal decoder 
and composite triplet loss. The decoder enforces reconstruction of tex-
tual label features from audio and video embeddings, while the com-
posite triplet loss minimizes distances among audio, video, and textual 
embeddings.

AVCA [49] proposes a cross-modal attention framework to integrate 
audio and visual information and align the resulting audio-visual em-
beddings with textual label embeddings.

TCAF [42] builds upon AVCA by additionally exploiting temporal 
information from audio and video inputs and applying cross-attention 
to capture cross-modal dependencies.

AVFS [59] introduces an audio-visual feature synthesis method that 
leverages contrastive and discriminative learning to simulate audio-
visual features of unseen classes.

AVMST [57] proposes an Audio-Visual Modality-fusion Spiking 
Transformer network, which extracts temporal features using a spiking 
neural network, fuses semantic and temporal information through cross-
attention, and performs feature reasoning with a transformer, enabling 
efficient classification of unseen video classes.

Our method is built upon the baseline TCAF model. TCAF primarily 
adopts a feature-level fusion strategy by introducing a temporal-aware 
cross-modal attention mechanism, which effectively leverages the tem-
poral correlations between the audio and visual modalities. However, 
it does not explicitly explore the internal feature structures contained 
within a single modality. To address this limitation, we propose SACMA, 
which incorporates a multilevel attention mechanism consisting of self-
attention and cross-attention modules to achieve deeper feature mod-
eling and more efficient cross-modal interaction. Specifically, SACMA 
introduces a “dual embedding” strategy on top of TCAF: self-attention 
is applied to the given audio and visual sequences to strengthen their in-
tramodal feature representations, while cross-attention is subsequently 
employed to capture richer and more effective intermodal interactions. 
Furthermore, we integrate a contrastive loss with a cosine similarity loss 
to enhance the semantic consistency and discriminability of the features 
across different modalities.

5.  Experimental results
5.1.  Comparison with state-of-the-art

To validate the effectiveness of our model, we compare it with the 
state-of-the-art audiovisual zero-shot learning methods on three bench-
mark datasets, as shown in Table 2. On the UCF-GZSL dataset, com-
pared with the baseline TCAF model, which achieves 31.72% HM and 
24.81% ZSL, SACMA achieves state-of-the-art performance, attaining 
37.71% HM and 29.07% ZSL, respectively. On the VGGSound-GZSL 
dataset, SACMA achieves 8.29% HM and 6.46% ZSL for GZSL, whereas 
TCAF achieves 7.33% HM and 6.06% ZSL.

The classes contained in the ActivityNet-GZSL dataset are con-
structed on the basis of a semantic category ontology, which provides 
a rich hierarchical structure for action classes. For example, the class 
“hand washing clothes” belongs to “laundry” (second level), “household 
chores” (third level), and “home activities” (fourth level). However, pre-
cisely owing to this clear hierarchical organization structure, the perfor-
mance achieved by SACMA on this dataset does not meet expectations, 
yielding results that are comparable to those of the baseline. This lim-
itation arises because SACMA focuses primarily on intramodal feature 
learning and cross-modal feature alignment and does not fully exploit 
the hierarchical semantic information embedded in the input dataset, 
thereby constraining its performance. Nevertheless, SACMA produces 
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Table 2 
Experimental results of our proposed method and the state-of-the-art audio-visual GZSL method on the VGGSound-GZSL, UCF-GZSL, and 
ActivityNet-GZSL datasets.
 Model  Venue  VGGSound-GZSL  UCF-GZSL  ActivityNet-GZSL

 S  U  HM  ZSL  S  U  HM  ZSL  S  U  HM  ZSL
 DEVISE [50]  NeurIPS’13  36.22  1.07  2.08  5.59  55.59  14.94  23.56  16.09  3.45  8.53  4.91  8.53
 ALE [1]  T-PAMI’15  0.28  5.48  0.53  5.48  57.59  14.89  26.50  18.93  2.63  7.87  3.94  7.90
 SJE [51]  CVPR’20  48.33  1.10  2.15  4.06  63.10  16.77  26.50  18.93  4.61  7.04  5.57  7.08
 f-VAEGAN-D2 [52]  CVPR’19  12.77  0.95  1.77  1.91  17.29  8.47  11.37  11.11  4.36  2.14  2.87  2.40
 APN [6]  IJCV’22  7.48  3.88  5.11  4.49  28.46  16.16  20.61  16.44  9.84  5.76  7.27  6.34
 CJME [53]  WACV’20  8.69  4.78  6.17  5.16  26.04  8.21  12.48  8.29  5.55  4.75  5.12  5.84
 AVGZSLNet [54]  WACV’21  18.05  3.48  5.83  5.28  52.52  10.90  18.05  13.65  8.93  5.04  6.44  5.40
 AVCA [46]  CVPR’22  14.90  4.00  6.31  6.00  51.53  18.43  27.15  20.01  24.86  8.02  12.13  9.13
 TCAF [40]  ECCV’22  9.64  5.91  7.33  6.06  58.60  21.74  31.72  24.81  18.07  7.50  10.71  7.91
 AVFS [55]  IJCNN’23  15.20  5.13  7.67  6.00  54.87  16.49  25.36  22.37  29.00  9.13  13.89  11.18
 AVMST [56]  ICME’23  14.14  5.28  7.68  6.61  44.08  22.63  29.91  28.19  17.75  9.90  12.71  10.37
 SACMA  Ours  13.42  6.00  8.29  6.46  60.15  27.46  37.71  29.07  17.12  7.32  10.25  7.52

Table 3 
Evaluation of the attention mechanism, showing GZSL and ZSL performance after removing individual components: 
audio self-attention (𝐴𝑆 ), video self-attention (𝑉𝑆 ), both (𝐴𝑆 + 𝑉𝑆 ), and cross-modal attention (𝑀𝑐).

 Model  VGGSound-GZSL  UCF-GZSL  ActivityNet-GZSL
 S  U  HM  ZSL  S  U  HM  ZSL  S  U  HM  ZSL

 w/o 𝐴𝑆  15.25  5.13  7.68  5.62  81.08  15.42  25.91  25.15  9.36  4.49  6.07  4.79
 w/o 𝑉𝑆  6.33  3.77  4.73  4.20  66.13  20.17  30.91  25.15  7.42  4.49  5.60  4.78
 w/o 𝐴𝑆 + 𝑉𝑆  4.00  5.59  4.67  5.59  66.42  15.71  25.41  22.40  11.72  4.16  6.14  4.83
 w/o 𝑀𝑐  4.85  4.99  4.92  6.38  46.49  23.93  31.60  26.17  7.45  3.15  4.43  3.94
 SACMA  13.42  6.00  8.29  6.46  60.15  27.46  37.71  29.07  17.12  7.32  10.25  7.52

Table 4 
Impact of different textual embeddings and attention mechanisms.
 Model  VGGSound-GZSL  UCF-GZSL  ActivityNet-GZSL

 S  U  HM  ZSL  S  U  HM  ZSL  S  U  HM  ZSL
𝑤𝑐𝑙𝑖𝑝  10.56  4.75  6.56  4.96  46.60  22.52  30.37  24.57  21.70  10.80  14.42  11.59
𝑤𝑐𝑙𝑖𝑝 + only SA  12.03  3.91  5.91  4.43  27.04  24.94  25.94  25.31  13.56  10.46  11.81  10.72
 SACMA  13.42  6.00  8.29  6.46  60.15  27.46  37.71  29.07  17.12  7.32  10.25  7.52
Table 5 
Evaluation of loss functions by comparing GZSL and ZSL performance when ablating 𝑙𝑐𝑐𝑙, 𝑙cos, 𝑙𝑟𝑒𝑔 , and 𝑙𝑟𝑒𝑐 indi-
vidually on VGGSound-GZSL, UCF-GZSL, and ActivityNet-GZSL.
 Model  VGGSound-GZSL  UCF-GZSL  ActivityNet-GZSL

 S  U  HM  ZSL  S  U  HM  ZSL  S  U  HM  ZSL
 w/o 𝑙𝑐𝑐𝑙  0.48  1.45  0.73  1.77  8.24  0.14  0.28  18.62  0.60  0.56  0.58  1.93
 w/o 𝑙cos  12.83  3.91  6.00  4.26  64.36  22.24  33.06  27.77  7.10  1.81  2.89  2.50
 w/o 𝑙𝑟𝑒𝑔  4.92  4.14  4.50  4.41  54.50  21.85  31.19  24.72  12.84  4.05  6.16  4.31
 w/o 𝑙𝑟𝑒𝑐  9.10  6.06  7.27  6.35  56.43  25.88  35.48  28.68  23.3  5.51  8.91  6.05
 SACMA  13.42  6.00  8.29  6.46  60.15  27.46  37.71  29.07  17.12  7.32  10.25  7.52

significantly superior results on the VGGSound-GZSL and UCF-GZSL 
datasets, providing strong evidence of its effectiveness. By integrating 
self-attention and cross-attention mechanisms for conducting audiovi-
sual representation learning and by enforcing both contrast and cosine 
similarity within a shared multimodal space, our method effectively 
leverages intramodal information and intermodal interactions to ensure 
semantic consistency across different modalities, thereby enhancing the 
robustness of the learned audiovisual representations. 

5.2.  Qualitative results
A qualitative analysis of the learned audio-visual embeddings is pre-

sented in Fig. 3. It shows t-SNE [59] visualization of the audio, the visual 
input features, and the learned audio-visual embedded features from six 
classes in the UCF-GZSL dataset. As shown in Fig. 3. The clustering of 
audio and video input features is poor, especially for audio input. In con-
trast, the audio-visual embeddings are clearly clustered. It appears that 
our SACMA-learned au-dio-visual features provide improved clustering 
effects over those of the input audio and visual features.

5.3.  Ablation analysis
5.3.1.  Influence of the attention mechanism

Table 3 shows that removing 𝑉𝑆 for the VGGSound-GZSL and 
ActivityNet-GZSL datasets yields lower results than removing 𝐴𝑆 . The 
performance of HM and ZSL on VGGSound-GZSL dramatically de-
creased from 8.29% and 6.46% to 4.73% and 4.20%, respectively. 
On ActivityNet-GZSL, the performance of HM and ZSL dramatically de-
creased from 10.25% and 7.52% to 5.60% and 4.78%, respectively. In-
terestingly, the opposite results are achieved on the UCF-GZSL dataset. 
On the VGGSound-GZSL and UCF-GZSL datasets, the performance de-
creased to its lowest value after removing 𝐴𝑆 + 𝑉𝑆 , which suggests 
that our self-attention mechanism helps to improve the performance of 
HM vs. ZSL, while on the ActivityNet-GZSL dataset, the performance 
achieved after removing 𝐴𝑆 + 𝑉𝑆 is better than that achieved after re-
moving 𝐴𝑆 or 𝑉𝑆 alone. After replacing the cross-attention mechanism 
used for combining features with the self-attention mechanism, the per-
formance of the model on all three dataset sets significantly decreased, 
especially on the ActivityNet-GZSL dataset, where the values of HM and 
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Fig. 3. t-SNE visualization for six seen samples from the UCF-GZSL dataset, showing audio and visual input embeddings extracted with SeLaVi [57], and audio-visual 
output embeddings learned with SACMA.

ZSL decreased from 10.25% and 7.52% to 4.43% and 3.94%, respec-
tively.The interaction of information from different modal data is bene-
ficial for improving the performance of the audiovisual GZSL task-heavy 
HM and ZSL. Overall, our 𝐴𝑆 + 𝑉𝑆 +𝑀𝐶 achieved the strongest GZSL 
and ZSL performances on all three datasets, proving the sophistication 
of our attentional mechanism selection approach.
5.3.2.  Influence of different text encoders and attention mechanisms

To further validate the effectiveness of each module in the pro-
posed method, we evaluated the impact of different textual embeddings 
and attention mechanisms, as summarized in Table 4. When replacing 
word2vec with Contrastive Language-Image Pre-Training(CLIP) embed-
dings (𝑤𝑐𝑙𝑖𝑝), the model achieves improved performance on ActivityNet-
GZSL, with HM and ZSL increasing from 10.25% and 7.32% to 14.42% 
and 11.59%, respectively, indicating that richer semantic information is 
beneficial for this dataset. However, on VGGSound-GZSL and UCF-GZSL, 
the performance metrics decrease, suggesting that although CLIP pro-
vides richer semantic information and advantages in visual-text align-
ment, it does not consistently enhance generalization in audiovisual 
GZSL scenarios. Furthermore, when using (𝑤𝑐𝑙𝑖𝑝+only SA), the per-
formance declines across all three datasets, demonstrating that rely-
ing solely on intra-modal feature learning is insufficient to effectively 
promote cross-modal semantic alignment and zero-shot generalization. 

In contrast, SACMA achieves the best performance on VGGSound-GZSL 
and UCF-GZSL, providing strong evidence that the proposed combina-
tion of self-attention and cross-attention effectively captures both intra-
modal key features and inter-modal semantic relationships.

5.3.3.  Influence of hyperparameter selection

In this section, we experimentally evaluate the effect of the tempera-
ture parameters 𝜏 and 𝜆_ cos on the SACMA performance. The combined 
contrast loss acts as the distance between samples of the same category, 
and we set a smaller temperature parameter 𝜏 to increase the sensitivity 
of the model and impose a larger penalty on samples of different cat-
egories. The weight of the cosine similarity loss 𝜆_ cos can improve the 
convergence of the model and avoid overfitting. First, we start with the 
optimal value of the temperature parameter 𝜏, and then we select the 
value of the weight 𝜆_ cos for the cosine similarity loss. Fig. 4 shows the 
results of our experiments on the VGGSound-GZSL dataset with two hy-
perparameters chosen. According to Fig. 4, SEEN is highly sensitive to 
changes in the two hyperparameters. The sensitivities of UNSEEN, HM, 
and ZSL are relatively small, and the changes are relatively flat. Based 
on the experimental results, we select a temperature parameter of 0.05 
and a cosine similarity loss weight of 0.2 as the optimal values for our 
model.

Fig. 4. Influence of hyperparameter selection.
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Table 6 
Evaluation of the influence of different input modalities.
 Model  VGGSound-GZSL  UCF-GZSL  ActivityNet-GZSL

 S  U  HM  ZSL  S  U  HM  ZSL  S  U  HM  ZSL
𝐼𝑚  10.88  3.16  4.90  3.45  46.42  20.62  28.56  24.80  15.67  5.46  8.09  5.68
𝐼_𝑚 + 𝐼_𝑎  8.21  4.26  5.61  4.87  56.83  18.55  27.97  20.91  1.78  5.10  2.63  5.10
𝐼_𝑚 + 𝐼_𝑣  10.37  6.14  7.72  6.38  56.06  21.20  30.77  24.37  6.95  5.36  6.05  5.61
 SACMA  13.42  6.00  8.29  6.46  60.15  27.46  37.71  29.07  17.12  7.32  10.25  7.52

Table 7 
Evaluation of the performance of the different output representations.
 Model  VGGSound-GZSL  UCF-GZSL  ActivityNet-GZSL

 S  U  HM  ZSL  S  U  HM  ZSL  S  U  HM  ZSL
𝜑𝑎  3.55  3.13  3.33  3.57  36.60  17.73  23.89  19.40  5.27  3.56  4.25  3.86
𝜑𝑣  4.43  3.83  4.19  3.94  30.91  18.84  23.41  24.37  6.27  4.29  5.09  4.77
𝜑𝑚  13.42  6.00  8.29  6.46  60.15  27.46  37.71  29.07  17.12  7.32  10.25  7.52

5.3.4.  Analysis of the impact of different loss functions
In this section, we conduct an ablation experiment analysis on the 

impact of changes in the loss function components (𝑙𝑐𝑐𝑙, 𝑙cos, 𝑙𝑟𝑒𝑔 , and 
𝑙𝑟𝑒𝑐). In the experiment, we eliminate one of the components at a time 
to observe the model performance on the VGGSound-GZSL, UCF-GZSL, 
and ActivityNet-GZSL datasets. We observe that on the three datasets, 
eliminating one of the components of the loss function negatively af-
fects the performance of the model, demonstrating the importance of 
each of these components. On the UCF-GZSL, VGGSound-GZSL, and 
ActivityNet-GZSL datasets, the results decreased sharply when 𝑙𝑐𝑐𝑙 was 
removed. The performances of HM and ZSL on VGGSound-GZSL de-
creased from 8.29% and 6.46% to 0.73% and 1.77%, respectively; 
for UCF-GZSL, the performances of GZSL and ZSL decreased from 
37.71% and 29.07% to 0.28% and 18.62%, respectively, whereas 
on ActivityNet-GZSL, the performances of GZSL and ZSL decreased 
from 10.25% and 7.52% to 0.58% and 1.93%, respectively. The three 
datasets are extremely sensitive to changes in 𝑙𝑐𝑐𝑙, which shows that 𝑙𝑐𝑐𝑙
can greatly improve the performance of the model and is well suited for 
the GZSL and ZSL tasks. After eliminating 𝑙cos and 𝑙𝑟𝑒𝑔 , the performance 
of the model on the VGGSound-GZSL and ActivityNet-GZSL datasets de-
creased significantly, which shows that 𝑙cos and 𝑙𝑟𝑒𝑔 are better for larger 
and more complex datasets. The impacts of eliminating 𝑙𝑟𝑒𝑐 on the re-
sults on the three datasets are relatively similar, indicating that using 𝑙𝑟𝑒𝑐
to constrain the representation learned by the model to contain infor-
mation in text label information is beneficial and can steadily improve 
the performance of the model. After using our full loss function, the 
best GZSL and ZSL performance were achieved on the three datasets, 
demonstrating the effectiveness of this loss function. Table 5

5.4.  Evaluating different modalities

5.4.1.  Influence of modal inputs
We compared the performances of training SACMA using differ-

ent input modalities, and the results are shown in Table 6. In the 
three datasets, adding visual input performed better than adding au-
dio input. This indicates that visual input features contain more com-
prehensive video content information than audio input features. For 
VGGSound-GZSL, after adding the audio mode, the performance of HM 
increased from 4.9% to 5.61%, and the performance of ZSL increased 
from 3.45% to 4.87%. Interestingly, the opposite result was observed 
for UCF-GZSL. After adding the audio mode, the HM and ZSL scores de-
creased from 28.56% and 24.8% to 27.97% and 20.91%, respectively. 
For ActivityNet-GZSL, adding audio or visual input alone leads to per-
formance degradation; however, adding audio and visual information 
simultaneously improves the model’s performance, indicating that ex-
ploiting complementary information in audio and visual inputs is very 
beneficial for GZSL and ZSL in video classification.

5.4.2.  Influence of different modal output
The results of the evaluation using different output representations 

are shown in Table 7. For VGGSound-GZSL and ActivityNet-GZSL, using 
𝜑𝑣 as the output evaluation representation led to slightly better perfor-
mance than did using 𝜑𝑎, suggesting that they learn visual information 
better. Specifically, for VGGSound-GZSL, the HM and ZSL scores ob-
tained using 𝜑𝑎 as the output evaluation representation are 3.33% and 
3.57%, respectively, while the HM and ZSL scores obtained using 𝜑𝑣 are 
4.19% and 3.94%, respectively. On ActivityNet-GZSL, the HM and ZSL 
scores obtained using 𝜑𝑎 as the output evaluation are 4.25% and 3.86%, 
respectively, while the HM and ZSL scores obtained using 𝜑𝑣 are 5.09% 
and 4.77%, respectively. The HM performance obtained by using 𝜑𝑎 as 
the output evaluation representation for UCF-GZSL was slightly better 
than that obtained by using 𝜑𝑣, and the opposite trend was observed in 
terms of the ZSL method, with HM scores of 23.89% and 23.41% and 
ZSL scores of 19.4% and 24.37%, respectively. Overall, using 𝜑𝑚 as the 
output evaluation representation on the three datasets led the best per-
formance representation, better than that obtained using 𝜑𝑎 and 𝜑𝑣 as 
the output performance representation. Therefore, we adopt 𝜑𝑚 as the 
output evaluation representation of our model.

6.  Conclusion

This study proposes an attention-based audio-visual generalized 
zero-shot learning method to improve the model’s ability to learn 
from audio-visual data, obtain better audio-visual representations, and 
achieve knowledge transfer from seen classes to unseen classes. This 
method processes single-modal input through a self-attention mecha-
nism, captures key features within each modality, and optimizes the uti-
lization of single-modal information. Moreover, a cross-attention mech-
anism is used to process multimodal input, allowing the model to more 
comprehensively understand and integrate multimodal information and 
explore the interrelationships between modalities in detail. During train-
ing, a combined contrast loss function is introduced to analyze the com-
bination of model input modalities during the training process, thereby 
strengthening the model’s understanding of the relationships between 
different modalities, improving the generalizability of the model, and 
making the model better suited for complex audio-visual multimodal 
tasks. The introduction of the cosine similarity loss at the same time im-
proves the model’s ability to accurately capture the intrinsic similarity 
of the samples and allows the model to complete the classification task 
by optimizing the similarity between the representations learned by the 
model between samples of the same category. The experiments show 
that our method achieves state-of-the-art performance on three bench-
mark datasets. For example, on the UCF-GZSL dataset, the performance 
of HM reaches 37.71%, and the performance of ZSL reaches 29.07%, 
which are better than those of the existing advanced methods.
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The proposed SACMA model focuses on features within a single 
modality and feature alignment between different modalities. It leads 
overall on the VGGSound-GZSL and UCF-GZSL datasets but performs 
commonly on the ActivityNet-GZSL dataset, which has a distinct hierar-
chical structure. In the future, further research is recommended to ex-
plore how to make the model learn the intrinsic hierarchical structure 
of the data to improve its generalization ability on hierarchical datasets. 
We will also continue to investigate more effective multimodal feature 
fusion strategies to ensure that information from different modalities 
can better complement each other.
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