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Audio-visual generalized zero-shot learning is aimed at learning good representations from audio-visual data,
enabling the recognition of unseen classes during testing. The existing embedding and generation methods have
made significant progress. However, these methods do not fully extract the internal features of each modality.
Moreover, there is insufficient information interaction between different modalities. To address these issues, we
propose an audiovisual zero-shot learning method based on self-attention and cross-modal attention (SACMA).
Specifically, we use a self-attention mechanism to obtain information within a single modality and a cross-
modal cross-attention mechanism to capture the relationships between different modalities. To establish the
connections between different modalities and minimize the gap between their features, we introduce a combined
contrastive loss function and a cosine similarity loss function. We evaluated the proposed method on three
benchmark datasets, VGGSound-GZSL, UCF-GZSL, and ActivityNet-GZSL, and compared it with eleven state-of-

the-art methods. Code and data available at https://github.com/ybyangjing/SACMA.

1. Introduction

Generalized zero-shot learning (GZSL) has become a hot research
area in computer vision because it can generalize knowledge from
known classes to unknown classes while retaining known class knowl-
edge. In the early zero-shot learning approaches, single-modal data, such
as images [1-7] and text [8], were typically utilized. However, relying
solely on data derived from a single modality is not sufficient. For exam-
ple, using both auditory and visual senses when one is watching a movie
can enhance one’s overall viewing experience. Moreover, audio-visual
generalized zero-shot learning can alleviate the limitations of single-
modal data and fuse auditory and visual data to obtain powerful repre-
sentations.

Owing to the semantic differences between audio and visual infor-
mation, samples belonging to the same category are represented differ-
ently by different modalities. Therefore, ensuring semantic consistency
between auditory and visual information is a key issue to be solved in
audio-visual zero-shot learning tasks. Currently, two types of commonly
used solutions are available: embedding-based methods and generation-
based methods. Embedding-based methods embed audio and visual in-
formation in a shared space and use loss functions to align the features
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of different modalities. Generative-based methods simulate the features
of unknown classes and learn the feature differences between the known
and unknown classes. However, these approaches ignore the importance
of single-modal information, and different modalities exhibit insufficient
information interaction. We found that video data are affected by envi-
ronmental noise and various changes, such as background noise, illumi-
nation changes, and occlusion, which is important for understanding the
semantic consistency between the auditory and visual modalities. There-
fore, we believe that separately learning the key features contained in
audio and video information is beneficial for the subsequent understand-
ing of the semantic associations between auditory information and vi-
sual information.

To overcome the limitations of the above approaches, we propose
a novel framework termed self-attention and cross-modal attention for
audio-visual zero-shot learning. Our audio-visual generalized zero-shot
learning method, which focuses on the connections between various
modalities, is shown in Fig. 1. Compared with the previously developed
methods, the audio-visual generalized zero-order learning method pro-
posed in this study, which fuses intramodal information and intermodal
correlations, can simultaneously focus on the information contained
within a single modality and the relationships between modalities. Our
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Fig. 1. Illustration of the proposed SACMA framework for audio-visual zero-shot learning. SACMA employs self-attention (SA) to capture intramodal audio and
video information and cross-attention (CA) to model the semantic associations between modalities, aligning audio-visual and text embeddings. Knowledge transfer
to unseen classes is achieved by predicting the text label embedding that is closest to the given audio-visual embedding.

method uses an attention mechanism to learn the respective internal
features of audio and video data and a cross-modal cross-attention mech-
anism to learn the relationships between the audio and video modalities,
allowing the model to more comprehensively utilize the information ac-
quired from different modalities. Thus, the model can learn more gen-
eral features from audio-visual data and improve its generalizability to
unseen classes.

To better train our model, we construct a combined contrastive loss
function and a cosine similarity loss. The combined contrastive loss is
used to learn the relationships among the audio, video, and text modal-
ities. Thus, the combination of different input modes is fully consid-
ered during the modeling process. By considering multimodal combi-
nations, our method not only captures the information between each
pair of modalities in a more comprehensive manner but also helps im-
prove the adaptability of the model to complex correlation structures.
This function not only enables the model to better learn and utilize the
rich information contained in multimodal data but also significantly im-
proves its ability to model the correlations of multimodal data in actual
complex scenarios. The cosine similarity loss is used to measure the sim-
ilarity between the representations learned by the model from samples
belonging to the same category. Through this loss function, the model
is encouraged to more effectively distinguish between similar samples
during the learning process, thereby more accurately capturing the in-
herent similarities between samples. This function helps to better reflect
the categorical associations between samples, providing stronger sup-
port enhancing for the generalizability and accuracy of the model. The
main contributions of this article are as follows:

¢ We introduce a dual-input audiovisual GZSL framework, namely,

SACMA, which includes both unimodal and multimodal inputs to

ensure semantic consistency between data derived from different

modalities.

To extract features from a single modality and the interactions be-
tween different modalities, we use a self-attention (SA) mechanism
and a cross-modal attention (CA), respectively.

e We construct a combined contrastive loss function and a cosine sim-
ilarity loss to reduce the distances between different modalities and
help the model align the representations of differ-ent modalities in a
common multimodal space.

e A comprehensive experimental evaluation of our met-hod is
conducted on three datasets: UCF-GZSL, VGGSound-GZSL,
and ActivityNet-GZSL. The proposed method achieves a 7.8%
improvement in GZSL performance and a 0.88 % improvement in
zero-shot learning (ZSL) performance on the UCF-GZSL data-set.

2. Related work
2.1. Single-modal learning

Single-modal learning is an important research direction computer
vision, focusing on processing and analyzing information from single-
modal data (such as images and text). How to obtain powerful feature
representations from single-modal data is a crucial challenge. The con-
volutional neural network (CNN) [9,10] utilizes local context informa-
tion and translation invariance properties and is widely used in single-
modal learning. The attention mechanism is a process of adaptive selec-
tion based on input features [11], which helps the model obtain pow-
erful feature representations. In this section, we introduce the research
progress on methods for mining intramodal information in single-modal
learning.

CNN-based methods: An understanding of biological visual systems
serves as the inspiration for the CNN design. The main purpose is to
effectively capture local features through convolution operations and
to achieve downsampling and position invariance of features through
pooling operations. Since Krizhevsky et al. [12] proposed the AlexNet
network, CNNs have rapidly emerged as a mainstream framework in
computer vision for learning features within single-modal data. As the
number of network layers has increased, VGGNet [13] and MSRNet [14]
have also emerged. However, the continuous increase in the number
of network layers is detrimental to practical applications. As a result,
CNN lightweight frameworks such as MobileNet [15] and ShuffleNet
[16] have emerged. By strengthening the performance of the convolu-
tion module, a series of new architectures have emerged, including the
network in network (NiN) [17] and GoogLeNet [18] architectures. In
addition, derivative models such as ResNet [19] and Inception ResNet
[20] have also been introduced. Since data such as images lack tem-
poral information compared to video data, Tran et al. [21] proposed
a deep three-dimensional convolutional network trained on large-scale
supervised video datasets to learn spatiotemporal features, helping the
model better extract important features within single-modal data. Gao
et al. [22] suggested TS-GCN, a dual-stream graph convolutional net-
work framework designed to model relationships between actions and
attributes, between actions, and between attributes and actions. TS-GCN
can learn from single modalities and obtain more information from data.

Attention mechanism-based methods: Attention mechanisms sim-
ulate human perception, enable the model to focus on the salient parts of
specific features, and are widely used in various single-modal learning
tasks [23,24]. By introducing an attention mechanism, the network can
learn autonomously and selectively by focusing on key information in a
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single modality, thereby improving the model performance and gener-
alizability. The soft attention mechanism developed by Chen et al. [25]
and Max et al. [26] can be trained in an end-to-end manner for con-
volutional networks. By inputting the features extracted by convolution
into the attention block, the model can focus on the internal features of
the modality. Wang et al. [27] proposed a residual attention network to
integrate soft attention into a rapidly developing feedforward network
structure using an encoder-decoder attention module. Different atten-
tion modules capture different types of attention to guide the model
to learn features in single-modal data. The self-attention mechanism
is an attention mechanism originating from natural language process-
ing (NLP) [28,29]. Because of its excellent performance in effectively
capturing long-range dependencies and adaptability, the self-attention
mechanism plays an important role in single-modal learning.

CNNs automatically learn hierarchical feature representations of
single-modal data through structures such as convolutional layers and
pooling layers and have achieved great success in single-modal tasks
such as image classification [30-33] and object detection [34]. The self-
attention mechanism establishes relationships between different posi-
tions within a single sequence, focuses on long-distance dependencies
within the sequence, and attains good performance with respect to the
long-distance dependencies contained in video data. Therefore, in this
study, our method uses a self-attention mechanism to learn important
audio and visual information from videos.

2.2. Audio-visual multimodal learning

In recent years, audio-visual multimodal learning has received in-
creasing attention because it can simulate human cognitive methods
of integrating multisensory input and provide richer and more com-
prehensive information. In audio-visual multimodal learning, captur-
ing the connection between audio and video using the natural align-
ment between them is a challenging task. In this section, we introduce
research progress on methods for capturing intermodal correlations in
audio-visual multimodal learning.

Transformer-based audio-visual learning: The transformer model
was initially successful in NLP and was later applied to computer vision.
In audio-visual multimodal learning, transformers have been widely
used in tasks such as video retrieval [35], audio-visual localization [36],
and audio-visual source separation [37]. Cheng et al. [38] proposed a
novel self-supervised framework for learning universal cross-modal rep-
resentations from unlabeled videos and explored three different collabo-
rative attention modules to focus on sound-related discriminative visual
areas and to introduce interactions between them. Nagrani et al. [39]
studied a variety of audio-visual fusion strategies for the multimodal
bottleneck transformer (MBT), aiming to improve the traditional trans-
former architecture, such as early fusion and midstage fusion. Specifi-
cally, the MBT was proposed to limit the cross-modal flow to the later
layer of the network. The layers adopt single-modal learning and fo-
cus on single-modal features through midterm fusion. In addition, the
MBT limits cross-modal attention between tokens within the layer by
introducing an attention bottleneck layer to capture more cross-modal
features. Mercea et al. [40] proposed a temporal cross-attention frame-
work for the audio-visual generalized zero-shot learning task that learns
the relationship between different modalities through a cross-modal at-
tention mechanism.

Non-transformer audio-visual learning: Owens et al. [41] used
convolutional neural networks to predict whether a given pair of au-
dio and video clips was temporally aligned in a self-supervised manner.
The learned representations were then used to perform sound source lo-
calization and audio-visual action recognition. Arandjelovic et al. [42]
introduced the audio-visual correspondence learning task. Here, train-
ing includes using visual and audio subnetworks to learn semantic the
correspondence between audio and visual data. Gao et al. [43] proposed
a multi-instance multilabel learning framework to solve the audio-visual
source separation problem; in this framework, different audio compo-
nents are extracted and associated with visual objects in videos.
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Our method benefits from a transformer and adopts its cross-
modal cross-attention mechanism to learn the correlation between audio
and video. Compared with nontransformer-based methods, the use of
transformer-based cross-attention mechanisms can enable one sequence
to pay attention to another sequence, thereby achieving cross-modal as-
sociations between different sequences.

3. Methods

3.1. Problem definition

In the audio-visual ZSL task, the aim is to learn to recognize previ-
ously unseen (U) classes, i.e., classes that the model is not exposed to
during training, from video data. In a more challenging GZSL scenario,
the test set contains not only samples from unseen classes but also sam-
ples from seen (S) classes. Therefore, the model needs to have the abil-
ity to generalize knowledge from seen to unseen classes during testing
while retaining knowledge about visible training classes. The model will
be able to better simulate learning tasks in the real world. However, it
is challenging for the model to cope with complex scenarios and gen-
eralizations. We divide the audio-visual dataset classes into seen and
unseen classes, and the corresponding labels are denoted Y and Yy, re-
spectively. Y5 nYy = @. The dataset consists of audio features a;,video
features v; and real labels y;.

3.2. Overall framework

Self-attention mechanisms focus on information within modalities,
while cross-attention mechanisms enable interactions between different
modalities. To simultaneously focus on the information within audio
and visual modalities and inter-modal relationships, we propose a novel
framework based on self-attention and cross-modal attention. As shown
in Fig. 2. The input data modalities of the SACMA framework are audio,
visual, and textual features, i.e., a, v, and ¢, respectively. Notably, I, and
1, are passed through the audio encoder A,,. and the video encoder V.,
respectively, and a new input I,, is obtained by splicing I, and I,.. I,
I,, and I,, are input into a transformer. Each transformer layer consists
of a multi-head self-attention layer, two normalization layers, a fully
connected feedforward layer, and residual connections. Self-attention is
used to learn the internal features of the modality for I, and I,, and
cross-modal attention is used to interact with the information seen in
different modalities for I,,. The outputs of the model are projected to the
multimodal common space through the projection modules A,,,, Vs
and M,,,. t does not need to be input to the transformer, but it needs to
be projected to the multimodal common space through 7,,,.

3.3. Joint embedding

The input data of our multimodal transformer framework consist of
three modal datasets: audio, video, and text. These features are extracted
from the original data through pretraining. Two encoders, an audio en-
coder and a video encoder, denoted 4,,. and V,,., respectively, are set
up by using A,,,. and V,,,. to project the audio and video features into the
same feature dimension. These features preserve semantic information
in the same dimensions as text features .

I, = Agye(a), I, = Vo (V) )

To allow the model to better learn and understand the information
within a given modality and the correlations between data belonging to
different modalities, we propose a dual-input method that uses single-
modal and multimodal inputs. With single-modal inputs, the model is
able to independently learn and understand the characteristics of differ-
ent data modalities, gaining insights into the unique properties of each
modality, such as the sound characteristics of audio and the visual con-
tent of video. This independent learning scheme helps the model more
accurately capture the information of each modality, allowing it to bet-
ter understand audio and video information in multimodal tasks and
achieve a more comprehensive multimodal understanding.
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Fig. 2. SACMA takes audio and visual features extracted from video data as input. After concatenation, the fused features are passed to transformer layers, where
self-attention captures intra-modal information and cross-attention models inter-modal interactions. The resulting classification outputs (p,, p,, p,,) are projected into

a multimodal common space shared with text embeddings, where the loss function is applied. Projection modules (A

(D(ay> D> Dimy» D)) correspond to different modalities.

In multimodal tasks, the model needs to learn the characteristics of
each modality independently, and it also needs to understand and pay
attention to the relationships between different modalities. For example,
in audio and video sentiment analysis tasks, the model needs to under-
stand not only the sound characteristics contained in the input audio
and the facial expression characteristics of the input video but also the
relationship between these two types of characteristics because sounds
and expressions are often related to each other when emotions are ex-
pressed. To encourage the model to pay attention to the relationships
between modalities, we use early fusion to integrate the information
derived from different modalities. Early fusion can fuse the information
acquired from different modalities into a common representation early
in the data processing pipeline, allowing the data elements of different
modalities to interact at the input level; this helps the model to more
comprehensively understand multimodal inputs and jointly participate
in feature learning.

I, = concat(1,,1,) (2)

where concat represents a splicing operation and a and v represent the
embedding of audio and visual features, respectively.

3.4. Multimodal fusion transformer

The proposed method contains L-stacked transformer layers; each
transformer layer consists of a multihead attention (MHA) layer and a
feedforward neural network (FFN) layer, and layer normalization (LN)
is applied before each layer. After layer normalization is applied, the
input features are first sent to the multihead attention layer. After resid-
ual connection and layer normalization are applied, the signals are sent
to the feedforward neural network layer. The output of the /-th feed-
forward neural network is used as the input of the / + 1-th multihead
attention layer. The FFN contains two linear layers, a gaussian error lin-
ear unit (GELU), which serves as the nonlinear activation function, and
two random deactivation functions. Specifically, a self-attention mecha-
nism is applied to single-modal inputs I, and I,, whereas a cross-modal
attention mechanism is employed for multimodal input 7,,. The self-
attention mechanism enables the model to focus on the information con-
tained within the input sequence, which helps the model more compre-
hensively understand the intrinsic structure of single-modal data. The
cross-modal cross-attention mechanism can establish dependencies be-
tween different data modalities, thereby effectively merging multimodal
information and integrating the important features of multimodal data.
Combining the two mechanisms can help the model learn more pow-
erful audio-visual representations. We transform the input embedding
x into query (Q), key (K), and value (V) vectors by means of three lin-
ear transformations: Q = XWy, Q0 = XWg, and Q = XW,,. W, W, and

v,

o> Myos Tpy,) and reconstruction modules

pro> pro> L pro

W), are the weight matrices. The attention score can be obtained through
Eq. (3). Since multimodal inputs concatenate audiovisual features, the
cross-attention mechanism pays more attention to the information in-
teraction between different modalities, and the attention scores of the
same modality are masked by the mask matrix.

T
Score(Q,K) = oK
k

mask(opt.) 3)

Attention(Q, K, V') = soft max [(Score(Q, K)|V (€))

where Attention(.) denotes the attention output and mask (opt.) denotes
that the mask is optional. The formula for the /-th transformer layer is
as follows:

Z, = MHA(LN(Z_))) + Z,_, ()
z,=FFN(LN(Z]))+ 7, )

where / represents the number of layers, the value range is {1... L},
and Z,_, represents the output of the / — 1 layer.

3.5. Projection to the multimodal common space

In multimodal data, information from different modalities has dif-
ferent semantic granularities. In each training iteration, for each input
of I, I, and I,,, the SACMA model is called once to obtain the corre-
sponding output classification token. So there are three outputs p,, p,,
and p,,. To obtain the final embedding for each modality, we map the
output and text label embeddings of the model together into a multi-
modal common space. In the prediction phase, we obtain class predic-
tions by determining the projected word2vec embedding that is closest
to the output embedding.

p=argmin (|l¢f = @,[,) ™

where ¢f represents the representation of the word2vec embedded class
label of class ¢ after performing embedding and mapping, and ¢,, rep-
resents the representation of the audio-visual output after the mapping
process.

3.6. Loss function

We train our model using a loss function / consisting of a combined
contrastive loss [44] I, a cosine similarity loss /., a regression loss

l,o¢> and a reconstruction loss /..

=1+ /l_coslcos + lreg + e (8

where 4 .. represents the weight of the cosine similarity loss /..
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3.6.1. Combinatorial contrastive loss
Our combined contrastive loss consists of a single-modal contrastive
loss I, and a multimodal contrastive loss /,,.

lccl = ls + lm (9)

Unlike traditional contrastive learning methods that rely on explicit neg-
ative sampling, our approach implicitly leverages intra-batch negatives:
within each mini-batch, non-matching sample pairs are naturally treated
as negative examples. This design encourages the model to draw se-
mantically aligned cross-modal samples closer in the shared embedding
space while simultaneously pushing apart dissimilar pairs. To this end,
we train three pairwise contrastive losses, namely the contrastive loss
1, , between audio and video, the contrastive loss between text and au-

dio /, ,, and the contrastive loss between text and video /, .

Iy = At_alr_a + Ar_ult_v + Aa_vla_v 10

where 4, ; represents the weighting coefficient of (a, §). Our single-
modal combination loss considers all possible and available modal
combinations and can be generalized to any set of modalities M =

{ml,mz,m3,‘..,mn}.

L= Y Al a1
u,vCM unv=>%

where /,, is the contrastive loss between modality » and modality v,
and 4, is the weighting coefficient. Moreover, we encourage class
tokens to exchange information between a single modality and multiple
modalities, that is, the contrastive loss /, ,, is between « and av, the
contrastive loss /, ,, is between v and av, and the contrastive loss /, ,, is

between 7 and av. The multimodal contrastive loss /,, is a comblnatlon
of the above losses.

lm = j't_avlt_av + Aa_aula_av + /‘lu_avlu_av (12)

The complete representation of our combined comparison loss /., is as

follows:

Loei =A 1+ A 1+ Ayl

cel tovtt v totto a_vtav (13)
+ Atiault,av + Aaiaulaiav + Auiavlviau

We use noise contrastive estimation [45] to calculate the combined

contrastive loss:

:__21 (M)-

| EXp (u v /T)
a4
i exp u; u/r)

Z _ | €Xp (u v; /‘r)

where 7 represents the temperature parameter and B is the batch size.

3.6.2. Cosine similarity loss

Our cosine similarity loss computes the similarity between the three
outputs ¢,, ¢,,, and ¢, of the model and the text label ¢,, for which
we train three pairwise similarity losses /,,, [, ,, and /,, ,. Moreover, we
implement an additional cosine similarity loss I, to calculate the sim-
ilarity between ¢, and ¢,,.

leos = la_t + lu_t + lm_t + lu_a (15)

where [, , represents the cosine similarity loss between ¢, and ¢,. In
deep learning, the cosine similarity loss /, , between x and y is calculated
as follows:

Iy =1-cos(x,y) (16)

where x,y C {@,.®,. @, @}, and cos (x, y) represent the cosine similar-
ity between x and y. When the cosine similarity is close to 1, the loss
value is close to 0, indicating that the similarity between the model pre-
diction and the target is high; however, when the cosine similarity is far
from 1, the loss value increases, indicating that the similarity is low. The
value range of cosine similarity is [-1, 1], where 1 indicates complete
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similarity, -1 indicates complete dissimilarity, and 0 indicates orthogo-
nality, i.e., no similarity or independence. The values in between rep-
resent intermediate similarities or dissimilarities. The cosine similarity
between x and y is calculated as follows:

xX-y ici Xi " Vi

[BYINRY \/22;1( e x \/Z?=1 (yi)z
3.6.3. Regression loss

The goal of the regression loss is to reduce the distance between the
single-modal output embedding of a sample, the multimodal output em-
bedding, and the corresponding word2vec embedding. As in [40], our
regression loss is also based on the mean square error metric. However,
we supplement this approach and focus not only on the distance be-
tween the multimodal output embedding and the text label embedding
but also on the single-modal distance between the static input and the
text label embedding. The regression loss is expressed as follows:

n n
1 201
lreg =; Z ((pmi - (pti) + ; Z ((.0,,, - (pf:)
i=1 i=1
n
1 2
+7 2 (0u-0)

where ¢, , ¢,,, and ¢, are the audio-visual embedding, audio embed-
ding, and visual embedding, respectively.

cos(x,y) = a7)

2

18

3.6.4. Reconstruction loss

The reconstruction loss of the SACMA method is also based on the
mean squared error metric and complements the process of reconstruct-
ing single-modal output embeddings. The goal of the reconstruction loss
is to ensure that our model is able to decode the semantic information
contained in the pre-extracted text label embeddings from embeddings
@as P> @,,> and @y, The reconstruction loss is expressed as follows:

n n
1 1 2
lrec=;§,(ym,_ti) +;§,<ya[_ti>
i=1

i=1 i=
n

1 2 Z" 2
n yL, i n 7r, i

i= i=1

2
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where v, , 7,,, ¥y, and y,, represent the reconstructed audio-visual fea-
tures, audio features, visual features, and text features, respectively.

4. Experimental setup
4.1. Dataset

We evaluate our method on the three benchmark datasets (UCF-
GZSL, VGGSound-GZSL, and ActivityNet-GZSL) that were introduced
previously [46]. Each dataset is divided according to the total number
of classes in the dataset, the total number of seen classes, the total num-
ber of unseen classes, and the detailed division of the numbers of seen
and unseen classes during training, validation, and testing (as shown in
Table 1).

VGGSound-GZSL is a modified version of the large audio-visual
dataset VGGSound [47]. This dataset contains a total of 276 classes,
including 138 seen classes and 138 unseen classes.

UCF-GZSL is an action recognition dataset for real-life action videos.
This dataset is a subset of UCF101 [48] and contains a total of 51 classes
of data sources, including 30 seen classes and 21 unseen classes.

ActivityNet-GZSL is an action recognition dataset based on Activi-
tyNet [49]. This dataset contains a total of 200 classes of data, including
99 visible classes and 101 unseen classes.

4.2. Implementation details
The Adam optimizer is used to train our model with a weight decay

of 1e3. The initial learning rates for VGGSound-GZSL, UCF-GZSL, and
ActivityNet-GZSL are set to 6e~>, 7e~>, and 7e™>, respectively. When we
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Table 1
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Statistics of the three benchmark datasets, including their total numbers of classes (C), seen
classes (S), and unseen classes (U), as well as the division of seen and unseen classes across
training (tr,), validation (val,, val,), and test (te,, te,) sets.

STAGE First stage Second stage

Training  Validation Training  Test
DATASET C S U try val val, try teg te,
UCF-GZSL 51 30 21 30 30 12 42 42 9
VGGSound-GZSL 276 138 138 138 138 138 207 207 69
ActivityNet-GZSL. 200 99 101 99 99 51 150 150 50

calculate the loss function /, we set the weight 4 ., of the loss / .
in Eq. (8) to 0.2. We also calculate the temperature parameter when
calculating the contrast loss and normalize the vector before calculating
the dot product. Larger weights are set for the loss functions /, ,, /, ,,
and /, ,,, in Eq. (13) because this is beneficial for training the model:
Maw=L4A4,=4%,=08,and 4, , = 4, 4, = 4, o = 0.1. Furthermore, for
the VGGSound-GZSL dataset, the learﬂing rate attenuator is set to true,
and the other settings follow those employed in [34]; all the models are
trained on a single NVIDIA GeForce GTX 3090Ti GPU.

4.3. Evaluation metrics

GZSL suffers from a common problem in that the model has an inher-
ent bias towards unseen classes, resulting in a generally higher accuracy
for seen classes. To overcome this bias and improve the accuracies on
both seen and unseen classes simultaneously, we follow [58] and use
average class accuracy to evaluate the model, calculate the average ac-
curacies on seen (S) and unseen (U) classes, and use their harmonic
mean (HM) as the evaluation metric for our GZSL task. The ZSL perfor-
mance is obtained by considering only the subset of test samples from
the unseen test classes.

4.4. Comparsion methods

We compare the proposed SACMA method with five ZSL approaches
and six GZSL approaches. For ZSL methods, we use concatenated image
and audio features as input instead of image features alone. The core
ideas of the compared methods are as follows:

DEVISE [52] introduces a deep embedding model that leverages tex-
tual data to learn semantic relations between labels and explicitly maps
images into a rich semantic embedding space, where similarity match-
ing is used for label prediction.

ALE [1] is a label-embedding-based ZSL framework that maps classes
into an attribute vector space and performs classification by learning a
compatibility function between images and label embeddings.

SJE [53] learns a compatibility function between image and class
embeddings, ensuring that matched embeddings receive higher scores
than mismatched ones.

APN [6] jointly learns global features and local features through an
attribute prototype network, enhancing the localization and disentan-
glement of attributes for more effective knowledge transfer from seen
to unseen classes.

f-VAEGAN-D2 [54] is a unified conditional generative framework
that combines VAE and GAN, leveraging unlabeled data to model
marginal feature distributions and generate interpretable visual
features.

CJME [55] embeds video, audio, and text labels into a shared em-
bedding space, ensuring that embeddings of the same class are closer
than those of different classes. It further introduces a modality-attention
mechanism to identify the dominant modality.

AVZSLNet [56] extends CJME by employing a cross-modal decoder
and composite triplet loss. The decoder enforces reconstruction of tex-
tual label features from audio and video embeddings, while the com-
posite triplet loss minimizes distances among audio, video, and textual
embeddings.

AVCA [49] proposes a cross-modal attention framework to integrate
audio and visual information and align the resulting audio-visual em-
beddings with textual label embeddings.

TCAF [42] builds upon AVCA by additionally exploiting temporal
information from audio and video inputs and applying cross-attention
to capture cross-modal dependencies.

AVFS [59] introduces an audio-visual feature synthesis method that
leverages contrastive and discriminative learning to simulate audio-
visual features of unseen classes.

AVMST [57] proposes an Audio-Visual Modality-fusion Spiking
Transformer network, which extracts temporal features using a spiking
neural network, fuses semantic and temporal information through cross-
attention, and performs feature reasoning with a transformer, enabling
efficient classification of unseen video classes.

Our method is built upon the baseline TCAF model. TCAF primarily
adopts a feature-level fusion strategy by introducing a temporal-aware
cross-modal attention mechanism, which effectively leverages the tem-
poral correlations between the audio and visual modalities. However,
it does not explicitly explore the internal feature structures contained
within a single modality. To address this limitation, we propose SACMA,
which incorporates a multilevel attention mechanism consisting of self-
attention and cross-attention modules to achieve deeper feature mod-
eling and more efficient cross-modal interaction. Specifically, SACMA
introduces a “dual embedding” strategy on top of TCAF: self-attention
is applied to the given audio and visual sequences to strengthen their in-
tramodal feature representations, while cross-attention is subsequently
employed to capture richer and more effective intermodal interactions.
Furthermore, we integrate a contrastive loss with a cosine similarity loss
to enhance the semantic consistency and discriminability of the features
across different modalities.

5. Experimental results
5.1. Comparison with state-of-the-art

To validate the effectiveness of our model, we compare it with the
state-of-the-art audiovisual zero-shot learning methods on three bench-
mark datasets, as shown in Table 2. On the UCF-GZSL dataset, com-
pared with the baseline TCAF model, which achieves 31.72% HM and
24.81 % ZSL, SACMA achieves state-of-the-art performance, attaining
37.71% HM and 29.07 % ZSL, respectively. On the VGGSound-GZSL
dataset, SACMA achieves 8.29 % HM and 6.46 % ZSL for GZSL, whereas
TCAF achieves 7.33 % HM and 6.06 % ZSL.

The classes contained in the ActivityNet-GZSL dataset are con-
structed on the basis of a semantic category ontology, which provides
a rich hierarchical structure for action classes. For example, the class
“hand washing clothes” belongs to “laundry” (second level), “household
chores” (third level), and “home activities” (fourth level). However, pre-
cisely owing to this clear hierarchical organization structure, the perfor-
mance achieved by SACMA on this dataset does not meet expectations,
yielding results that are comparable to those of the baseline. This lim-
itation arises because SACMA focuses primarily on intramodal feature
learning and cross-modal feature alignment and does not fully exploit
the hierarchical semantic information embedded in the input dataset,
thereby constraining its performance. Nevertheless, SACMA produces
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Table 2
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Experimental results of our proposed method and the state-of-the-art audio-visual GZSL method on the VGGSound-GZSL, UCF-GZSL, and

ActivityNet-GZSL datasets.

Model Venue VGGSound-GZSL UCF-GZSL ActivityNet-GZSL
S U HM ZSL S 18] HM ZSL S U HM ZSL
DEVISE [50] NeurIPS’13 36.22 1.07 2.08 5.59 55.59 14.94 23.56 16.09 3.45 8.53 4.91 8.53
ALE [1] T-PAMI'15 0.28 5.48 0.53 5.48 57.59 14.89 26.50 18.93 2.63 7.87 3.94 7.90
SJE [51] CVPR’20 48.33 1.10 2.15 4.06 63.10 16.77 26.50 18.93 4.61 7.04 5.57 7.08
f-VAEGAN-D2 [52] CVPR’'19 12.77 0.95 1.77 1.91 17.29 8.47 11.37 11.11 4.36 2.14 2.87 2.40
APN [6] 1JCv’22 7.48 3.88 5.11 4.49 28.46 16.16 20.61 16.44 9.84 5.76 7.27 6.34
CJME [53] WACV’20 8.69 4.78 6.17 5.16 26.04 8.21 12.48 8.29 5.55 4.75 5.12 5.84
AVGZSLNet [54] WACV’21 18.05 3.48 5.83 5.28 52.52 10.90 18.05 13.65 8.93 5.04 6.44 5.40
AVCA [46] CVPR’22 14.90 4.00 6.31 6.00 51.53 18.43 27.15 20.01 24.86 8.02 12.13 9.13
TCAF [40] ECCV’22 9.64 5.91 7.33 6.06 58.60 21.74 31.72 24.81 18.07 7.50 10.71 7.91
AVEFS [55] IJCNN’23 15.20 5.13 7.67 6.00 54.87 16.49 25.36 22.37 29.00 9.13 13.89 11.18
AVMST [56] ICME’23 14.14 5.28 7.68 6.61 44.08 22.63 29.91 28.19 17.75 9.90 12.71 10.37
SACMA Ours 13.42 6.00 8.29 6.46 60.15 27.46 37.71 29.07 17.12 7.32 10.25 7.52
Table 3
Evaluation of the attention mechanism, showing GZSL and ZSL performance after removing individual components:
audio self-attention (Ay), video self-attention (Vy), both (A5 + V), and cross-modal attention (M,).
Model VGGSound-GZSL UCF-GZSL ActivityNet-GZSL
S U HM ZSL S U HM ZSL S 8] HM ZSL
wW/0 Ag 15.25 5.13 7.68 5.62 81.08 15.42 25.91 25.15 9.36 4.49 6.07 4.79
w/o Vg 6.33 3.77 4.73 4.20 66.13 20.17 30.91 25.15 7.42 4.49 5.60 4.78
w/0 Ag+ Vg 4.00 5.59 4.67 5.59 66.42 15.71 25.41 22.40 11.72 4.16 6.14 4.83
w/o M, 4.85 4.99 4.92 6.38 46.49 23.93 31.60 26.17 7.45 3.15 4.43 3.94
SACMA 13.42 600 8.29 6.46 6015 27.46 3771 29.07 17.12 732 1025 7.52
Table 4
Impact of different textual embeddings and attention mechanisms.
Model VGGSound-GZSL UCF-GZSL ActivityNet-GZSL
S U HM ZSL S U HM ZSL S 18} HM ZSL
Wiy 10.56 4.75 6.56 4.96 46.60 22.52 30.37 24.57 21.70 10.80 14.42 11.59
w,;, + only SA 12.03 3.91 5.91 4.43 27.04 24.94 25.94 25.31 13.56 10.46 11.81 10.72
SACMA 13.42 6.00 8.29 6.46 60.15 27.46 37.71 29.07 17.12 7.32 10.25 7.52
Table 5

Evaluation of loss functions by comparing GZSL and ZSL performance when ablating /.., /

cos? lreg: and lrec indi-

vidually on VGGSound-GZSL, UCF-GZSL, and ActivityNet-GZSL.

Model VGGSound-GZSL UCF-GZSL ActivityNet-GZSL

S 1) HM ZSL S U HM ZSL S U HM ZSL
w/o ., 0.48 1.45  0.73 1.77  8.24 0.14 0.28 18.62  0.60 056  0.58 1.93
W/0 o6 12.83 3.91 6.00 4.26 64.36 22.24 33.06 27.77 7.10 1.81 2.89 2.50
w/ol,,  4.92 414 450 441 5450 21.85 31.19 24.72 12.84 405 6.16 4.31
W/0 I, 9.10 6.06 727 635 56.43 2588 3548 28.68 233 551 891 6.05
SACMA 13.42 6.00 8.29 6.46 60.15 27.46 37.71 29.07 17.12 7.32 10.25 7.52

significantly superior results on the VGGSound-GZSL and UCF-GZSL
datasets, providing strong evidence of its effectiveness. By integrating
self-attention and cross-attention mechanisms for conducting audiovi-
sual representation learning and by enforcing both contrast and cosine
similarity within a shared multimodal space, our method effectively
leverages intramodal information and intermodal interactions to ensure
semantic consistency across different modalities, thereby enhancing the
robustness of the learned audiovisual representations.

5.2. Qualitative results

A qualitative analysis of the learned audio-visual embeddings is pre-
sented in Fig. 3. It shows t-SNE [59] visualization of the audio, the visual
input features, and the learned audio-visual embedded features from six
classes in the UCF-GZSL dataset. As shown in Fig. 3. The clustering of
audio and video input features is poor, especially for audio input. In con-
trast, the audio-visual embeddings are clearly clustered. It appears that
our SACMA-learned au-dio-visual features provide improved clustering
effects over those of the input audio and visual features.

5.3. Ablation analysis

5.3.1. Influence of the attention mechanism

Table 3 shows that removing Vg for the VGGSound-GZSL and
ActivityNet-GZSL datasets yields lower results than removing Ag. The
performance of HM and ZSL on VGGSound-GZSL dramatically de-
creased from 8.29% and 6.46% to 4.73% and 4.20 %, respectively.
On ActivityNet-GZSL, the performance of HM and ZSL dramatically de-
creased from 10.25 % and 7.52 % to 5.60 % and 4.78 %, respectively. In-
terestingly, the opposite results are achieved on the UCF-GZSL dataset.
On the VGGSound-GZSL and UCF-GZSL datasets, the performance de-
creased to its lowest value after removing Ag + Vg, which suggests
that our self-attention mechanism helps to improve the performance of
HM vs. ZSL, while on the ActivityNet-GZSL dataset, the performance
achieved after removing Ag + Vg is better than that achieved after re-
moving Ag or Vg alone. After replacing the cross-attention mechanism
used for combining features with the self-attention mechanism, the per-
formance of the model on all three dataset sets significantly decreased,
especially on the ActivityNet-GZSL dataset, where the values of HM and
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Fig. 3. t-SNE visualization for six seen samples from the UCF-GZSL dataset, showing audio and visual input embeddings extracted with SeLaVi [57], and audio-visual

output embeddings learned with SACMA.

ZSL decreased from 10.25% and 7.52 % to 4.43 % and 3.94 %, respec-
tively.The interaction of information from different modal data is bene-
ficial for improving the performance of the audiovisual GZSL task-heavy
HM and ZSL. Overall, our Ag + Vg + M achieved the strongest GZSL
and ZSL performances on all three datasets, proving the sophistication
of our attentional mechanism selection approach.

5.3.2. Influence of different text encoders and attention mechanisms

To further validate the effectiveness of each module in the pro-
posed method, we evaluated the impact of different textual embeddings
and attention mechanisms, as summarized in Table 4. When replacing
word2vec with Contrastive Language-Image Pre-Training(CLIP) embed-
dings (w,;;,), the model achieves improved performance on ActivityNet-
GZSL, with HM and ZSL increasing from 10.25 % and 7.32 % to 14.42 %
and 11.59 %, respectively, indicating that richer semantic information is
beneficial for this dataset. However, on VGGSound-GZSL and UCF-GZSL,
the performance metrics decrease, suggesting that although CLIP pro-
vides richer semantic information and advantages in visual-text align-
ment, it does not consistently enhance generalization in audiovisual
GZSL scenarios. Furthermore, when using (w,;;, + only SA), the per-
formance declines across all three datasets, demonstrating that rely-
ing solely on intra-modal feature learning is insufficient to effectively
promote cross-modal semantic alignment and zero-shot generalization.
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(a) Influence of T parameter selection

In contrast, SACMA achieves the best performance on VGGSound-GZSL
and UCF-GZSL, providing strong evidence that the proposed combina-
tion of self-attention and cross-attention effectively captures both intra-
modal key features and inter-modal semantic relationships.

5.3.3. Influence of hyperparameter selection

In this section, we experimentally evaluate the effect of the tempera-
ture parameters r and 4 ., on the SACMA performance. The combined
contrast loss acts as the distance between samples of the same category,
and we set a smaller temperature parameter  to increase the sensitivity
of the model and impose a larger penalty on samples of different cat-
egories. The weight of the cosine similarity loss 4 ., can improve the
convergence of the model and avoid overfitting. First, we start with the
optimal value of the temperature parameter z, and then we select the
value of the weight 4 ., for the cosine similarity loss. Fig. 4 shows the
results of our experiments on the VGGSound-GZSL dataset with two hy-
perparameters chosen. According to Fig. 4, SEEN is highly sensitive to
changes in the two hyperparameters. The sensitivities of UNSEEN, HM,
and ZSL are relatively small, and the changes are relatively flat. Based
on the experimental results, we select a temperature parameter of 0.05
and a cosine similarity loss weight of 0.2 as the optimal values for our
model.
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Fig. 4. Influence of hyperparameter selection.
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Table 6
Evaluation of the influence of different input modalities.
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Model VGGSound-GZSL UCF-GZSL ActivityNet-GZSL
S 1) HM ZSL S U HM ZSL S 18] HM ZSL
1, 10.88 3.16 4.90 3.45 46.42 20.62 28.56 24.80 15.67 5.46 8.09 5.68
Im +1a 8.21 4.26 5.61 4.87 56.83 18.55 27.97 20.91 1.78 5.10 2.63 5.10
Im+1Iv 10.37 6.14 7.72 6.38 56.06 21.20 30.77 24.37 6.95 5.36 6.05 5.61
SACMA 13.42 6.00 8.29 6.46 60.15 27.46 37.71 29.07 17.12 7.32 10.25 7.52
Table 7
Evaluation of the performance of the different output representations.
Model  VGGSound-GZSL UCF-GZSL ActivityNet-GZSL
S U HM ZSL S 18} HM ZSL S 8] HM ZSL
@, 3.55 3.13 3.33 3.57 36.60 17.73 23.89 19.40 5.27 3.56 4.25 3.86
@, 4.43 3.83 4.19 3.94 30.91 18.84 23.41 24.37 6.27 4.29 5.09 4.77
P 13.42 6.00 8.29 6.46 60.15 27.46 37.71 29.07 17.12 7.32 10.25 7.52

5.3.4. Analysis of the impact of different loss functions

In this section, we conduct an ablation experiment analysis on the
impact of changes in the loss function components (/;.;, /oo /g @and
I,..)- In the experiment, we eliminate one of the components at a time
to observe the model performance on the VGGSound-GZSL, UCF-GZSL,
and ActivityNet-GZSL datasets. We observe that on the three datasets,
eliminating one of the components of the loss function negatively af-
fects the performance of the model, demonstrating the importance of
each of these components. On the UCF-GZSL, VGGSound-GZSL, and
ActivityNet-GZSL datasets, the results decreased sharply when / ., was
removed. The performances of HM and ZSL on VGGSound-GZSL de-
creased from 8.29% and 6.46% to 0.73% and 1.77 %, respectively;
for UCF-GZSL, the performances of GZSL and ZSL decreased from
37.71% and 29.07% to 0.28% and 18.62%, respectively, whereas
on ActivityNet-GZSL, the performances of GZSL and ZSL decreased
from 10.25% and 7.52 % to 0.58 % and 1.93 %, respectively. The three
datasets are extremely sensitive to changes in /,.;, which shows that / .,
can greatly improve the performance of the model and is well suited for
the GZSL and ZSL tasks. After eliminating /., and /,,,, the performance
of the model on the VGGSound-GZSL and ActivityNet-GZSL datasets de-
creased significantly, which shows that /, and /,,, are better for larger
and more complex datasets. The impacts of eliminating /,,. on the re-
sults on the three datasets are relatively similar, indicating that using /,,,
to constrain the representation learned by the model to contain infor-
mation in text label information is beneficial and can steadily improve
the performance of the model. After using our full loss function, the
best GZSL and ZSL performance were achieved on the three datasets,
demonstrating the effectiveness of this loss function. Table 5

5.4. Evaluating different modalities

5.4.1. Influence of modal inputs

We compared the performances of training SACMA using differ-
ent input modalities, and the results are shown in Table 6. In the
three datasets, adding visual input performed better than adding au-
dio input. This indicates that visual input features contain more com-
prehensive video content information than audio input features. For
VGGSound-GZSL, after adding the audio mode, the performance of HM
increased from 4.9 % to 5.61 %, and the performance of ZSL increased
from 3.45% to 4.87 %. Interestingly, the opposite result was observed
for UCF-GZSL. After adding the audio mode, the HM and ZSL scores de-
creased from 28.56 % and 24.8 % to 27.97 % and 20.91 %, respectively.
For ActivityNet-GZSL, adding audio or visual input alone leads to per-
formance degradation; however, adding audio and visual information
simultaneously improves the model’s performance, indicating that ex-
ploiting complementary information in audio and visual inputs is very
beneficial for GZSL and ZSL in video classification.

5.4.2. Influence of different modal output

The results of the evaluation using different output representations
are shown in Table 7. For VGGSound-GZSL and ActivityNet-GZSL, using
¢, as the output evaluation representation led to slightly better perfor-
mance than did using ¢,, suggesting that they learn visual information
better. Specifically, for VGGSound-GZSL, the HM and ZSL scores ob-
tained using ¢, as the output evaluation representation are 3.33 % and
3.57 %, respectively, while the HM and ZSL scores obtained using ¢, are
4.19% and 3.94 %, respectively. On ActivityNet-GZSL, the HM and ZSL
scores obtained using ¢, as the output evaluation are 4.25 % and 3.86 %,
respectively, while the HM and ZSL scores obtained using ¢, are 5.09 %
and 4.77 %, respectively. The HM performance obtained by using ¢, as
the output evaluation representation for UCF-GZSL was slightly better
than that obtained by using ¢,, and the opposite trend was observed in
terms of the ZSL method, with HM scores of 23.89 % and 23.41 % and
ZSL scores of 19.4 % and 24.37 %, respectively. Overall, using ¢,, as the
output evaluation representation on the three datasets led the best per-
formance representation, better than that obtained using ¢, and ¢, as
the output performance representation. Therefore, we adopt ¢,, as the
output evaluation representation of our model.

6. Conclusion

This study proposes an attention-based audio-visual generalized
zero-shot learning method to improve the model’s ability to learn
from audio-visual data, obtain better audio-visual representations, and
achieve knowledge transfer from seen classes to unseen classes. This
method processes single-modal input through a self-attention mecha-
nism, captures key features within each modality, and optimizes the uti-
lization of single-modal information. Moreover, a cross-attention mech-
anism is used to process multimodal input, allowing the model to more
comprehensively understand and integrate multimodal information and
explore the interrelationships between modalities in detail. During train-
ing, a combined contrast loss function is introduced to analyze the com-
bination of model input modalities during the training process, thereby
strengthening the model’s understanding of the relationships between
different modalities, improving the generalizability of the model, and
making the model better suited for complex audio-visual multimodal
tasks. The introduction of the cosine similarity loss at the same time im-
proves the model’s ability to accurately capture the intrinsic similarity
of the samples and allows the model to complete the classification task
by optimizing the similarity between the representations learned by the
model between samples of the same category. The experiments show
that our method achieves state-of-the-art performance on three bench-
mark datasets. For example, on the UCF-GZSL dataset, the performance
of HM reaches 37.71 %, and the performance of ZSL reaches 29.07 %,
which are better than those of the existing advanced methods.



J. Yang et al.

The proposed SACMA model focuses on features within a single
modality and feature alignment between different modalities. It leads
overall on the VGGSound-GZSL and UCF-GZSL datasets but performs
commonly on the ActivityNet-GZSL dataset, which has a distinct hierar-
chical structure. In the future, further research is recommended to ex-
plore how to make the model learn the intrinsic hierarchical structure
of the data to improve its generalization ability on hierarchical datasets.
We will also continue to investigate more effective multimodal feature
fusion strategies to ensure that information from different modalities
can better complement each other.
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